
Enabling Automated Detection
of Security Events that affect

Multiple Administrative Domains

Jed Pickel
Carnegie Mellon University

Information Networking Institute

Roman Danyliw
Carnegie Mellon University

Information Networking Institute

Enabling Automated Detection of Security Events that affect Multiple
Administrative Domains
by Jed Pickel and Roman Danyliw

Copyright © 2000 by Jed Pickel and Roman Danyliw

Abstract

Current security event analysis techniques are myopic in focusing only on single administrative
domains. With the increasing security dependencies among Internet-connected networks there are
few mechanisms in place to share and analyze security event data on a larger scale. Existing
information sharing strategies do not scale well, as they rely on human-intensive operations such
as telephone calls and email messages. There exists a need for an infrastructure that crosses
administrative boundaries and enables automated data sharing, coordination, and response to
security events. By providing an architecture and prototype for collecting data originating from
multiple administrative domains, this research begins to tackle Internet the security dependency
problem using automated technology rather than human effort.

Table of Contents
Preface...9

1. Why read this thesis?...9
2. Intended Audience...10
3. Definitions..10
4. Organization...10

1. Introduction ..12

1.1. Background...12
1.1.1. Intrusion Detection Technology...12
1.1.2. Incident Reporting...13
1.1.3. Computer Security and Incident Response Teams (CSIRTs)..............14
1.1.4. What is an Incident?...15
1.1.5. Convergence of Incident Response and Intrusion Detection...............16
1.1.6. Internet Security Challenges..17

1.1.6.1. Security Awareness...17
1.1.6.2. Security Dependency..17
1.1.6.3. No standard representation of intrusion data............................18
1.1.6.4. No standard for exchange of intrusion data..............................18
1.1.6.5. Human effort in handling incidents..18
1.1.6.6. Human error and inconsistency..19
1.1.6.7. Other...19

1.2. Objectives..19
1.3. Scope, Limitations and Assumptions..19

2. Technology Review...21

2.1. Standard Formats..21
2.1.1. CIDF..21
2.1.2. IDWG...21
2.1.3. IODEF..22
2.1.4. tcpdump and libpcap..22
2.1.5. Other work...23

2.2. Intrusion Detection Infrastructure...23
2.2.1. AAFID...24
2.2.2. AIDE..24
2.2.3. Emerald..24
2.2.4. FIDNET...25

3

2.2.5. IDIAN..25
2.2.6. Shadow...25
2.2.7. SnortNet...25

2.3. Incident Reporting Infrastructure..26
2.3.1. AIRCERT...26
2.3.2. AUSCERT: Automated Report Processing..26
2.3.3. GIAC..26
2.3.4. INCIDENT.ORG...27
2.3.5. Other IR Infrastructure Projects...27

2.4. Other Related Projects..27
2.4.1. Mailing Lists and Web Sites..28
2.4.2. SnortSnarf..28
2.4.3. Event Notification..28

3. Methods of Research..29

3.1. Open source software..29
3.2. Reuse of code..29
3.3. Working with the CERT/CC...29

4. Architecture ..31

4.1. Sensor..31
4.2. Collector..33
4.3. Communication...34

4.3.1. Channel..34
4.3.2. Data encoding..35
4.3.3. Feedback protocol..36

4.4. Backing store..36
4.5. Analysis Engine..37

5. Implementation..38

5.1. Sensor Implementation: Snort...38
5.1.1. Snort Architectural Overview..38

5.1.1.1. Input..39
5.1.1.2. Detection core...39
5.1.1.3. Output plug-ins...40

5.1.2. Required Snort additions..40
5.2. Collector Implementation: Apache...41

5.2.1. Apache Architecture..42
5.2.2. Apache Additions...43

4

5.3. Communication Implementation..44
5.3.1. Simple Network Markup Language...45
5.3.2. Feedback protocol..46
5.3.3. Public Key Certificates...47

5.4. Backstore Implementation: MySQL...47
5.5. Analysis Engine Implementation: ACID..48

6. Analysis and Interpretations...50

6.1. Sensor Analysis...50
6.2. Collector Analysis...51
6.3. Channel Analysis..52

6.3.1. Transport protocol analysis..52
6.3.2. Data encoding analysis..53

6.4. Backing Store Analysis...53
6.5. Analysis Engine Analysis...54
6.6. Performance..55
6.7. Scalability...56
6.8. Portability..57
6.9. Security...58

6.9.1. Authentication and Authorization..58
6.9.2. Confidentiality...59
6.9.3. Integrity..60
6.9.4. Availability...60
6.9.5. Security failure consequences..61

6.10. Reliability..62
6.11. Affordability...62
6.12. Extensibility..63
6.13. Usability..63

7. Conclusions...64

7.1. Deficiencies...64
7.2. Current Status..64
7.3. Future Work..64

7.3.1. Collector Server Architecture..65
7.3.2. Deploying prototype-aware sensors...65
7.3.3. Detecting Events..66

7.3.3.1. Common Alert Naming Scheme...66
7.3.3.2. Defining and tailoring the signature-set....................................66

5

7.3.3.3. Building an Abstract Signatures Language...............................67
7.3.4. Assessing the encoding format and protocol flexibility.......................67
7.3.5. Storing Alerts...67
7.3.6. Analysis Possibilities...68

7.4. Final Thoughts..68

A. Snort Database plug-in documentation..70

A.1. README.database file included with snort..70
A.2. Function documentation...74

B. Database Schema...77

B.1. Snort and Collector Schema...77
B.2. Certificate Authority Schema...78

C. Snort XML plug-in documentation ...80

C.1. README.xml file included with snort..80
C.2. Function documentation...83

C.2.1. Callback functions...83
C.2.2. Initialization Routines...84
C.2.3. XML Generating Functions..84
C.2.4. Networking Code..85
C.2.5. SSL Functions...85
C.2.6. Other..86

D. SNML DTD ..87

E. Module AIR (mod_air) documentation...92

E.1. Configuration..92
E.2. Function documentation...93

E.2.1. Apache Callbacks..94
E.2.2. Apache Callback helpers...97
E.2.3. Certificate Authority API..98
E.2.4. Inter-Process Communication...98
E.2.5. Logging Facilities..99
E.2.6. Connection Throttling...102
E.2.7. XML Processing..105
E.2.8. XML SAX Callbacks..106
E.2.9. XML-to-DB Abstraction...108
E.2.10. Alert Parsing Helpers..111

F. Feedback protocol specifications..115

6

F.1. OK (1xx)...115
F.2. Authentication codes (3xx)...115
F.3. Input Processing codes (4xx)..116
F.4. Throttling codes (5xx)...117

G. Detailed Performance Analysis..119

Glossary..122

Bibliography ...124

7

List of Tables
1-1. Examples of CSIRTs and their constituencies..14
6-1. Prototype components portability...57
B-1. Snort and Collector table schema..77
B-2. CA table schema..78
E-1. mod_air source tree..94

List of Figures
1-1. Incident Type vs. Handling Matrix...15
4-1. Prototype Architecture..31
5-1. Snort Architecture...39
5-2. Apache Life-cycle...42
5-3. Prototype Protocol Stack..45
B-1. Snort and Collector database ER diagram...77
B-2. Certificate Authority database ER diagram...78
G-1. Alert processing time comparison...119
G-2. Processing an Alert: Percent time in each operations..120

List of Examples
5-1. Sample Snort Rule..40
5-2. Sample SNML document...46
5-3. Sample "Feedback" protocol result..47

8

Preface
When the first nodes of the ARPANET were connected in 1969, researchers quickly
realized the power of using computers to share and exchange information. Their
emphasis was on defining and implementing protocols that achieved interoperation
[R14]. At the time, they may not have realized their work was building a foundation for
a new economy; but, they did understand the importance of establishing standard
protocols as a prerequisite to growth and progress. While standards enabled the Internet
to grow, many commercial vendors saw TCP/IP as a nuisance add-on that had to be
glued onto their own proprietary networking solutions [R14].

There are interesting parallels to observe between computing history and emerging
trends in the Internet security industry. In the early days of computing there was little
interoperability and few data exchange standards; a significant percentage of the
available technology was proprietary and inoperable. Since then the industry has
evolved from independent, vendor-specific solutions to a mindset of global
interoperability where "the network is the computer"®1

The Internet security industry today is still in its infancy and we are likely to see history
repeat and the industry to grow similar to the Internet. Market dynamics are driving
consumers to demand interoperation and open standards. In the current state, security
administrators are forced to grow their own tools in order to have any semblance of
interoperation across multiple vendor products. Also, there is a growing demand to
exchange data and knowledge about security incidents but no technology or standard
exists to help automate this process.

The research performed in this thesis intends to address these issues and take a step
forward in building standards that can enable a new world of possibilities for the
Internet security industry.

1. Why read this thesis?
This thesis covers emerging topics of interest to early adopters and vendors of intrusion
detection technology, incident response teams, or any entity interested in exchanging
intrusion data.

The research discussed in this thesis is part of an ongoing effort to build Internet-wide

9

Preface

intrusion detection infrastructure. Collaboration across organizations is essential for
security. Building a standard intrusion data representation and exchange format will
enable "neighborhood watch" capabilities to emerge on the Internet.

2. Intended Audience
We expect readers will have some familiarity with intrusion detection, certificate-based
authentication, and a good understanding of the current state of Internet technology.

3. Definitions
There is no standard dictionary for the Internet security industry and there are many
widely used terms that have different meaning depending on the context. Terms uses
throughout this document that can have more than one meaning are defined in the
Glossary.

4. Organization

Chapter 1

This chapter sets the stage by exploring the motivations for this research and
providing a detailed statement of goals and objectives.

Chapter 2

There are many projects and technologies related to the topics covered in this
thesis. This chapter provides a general overview of the these related works.

Chapter 3

Hypothesis and methods of research are discussed within this section to detail the
strategy utilized to accomplish the research goals and objectives.

10

Preface

Chapter 4

The overall architecture, requirements, and functionality of the components are
discussed.

Chapter 5

The specific implementation of the prototype is examined in this chapter.

Chapter 6

Based on the result of the prototype, this section discusses design decisions and
presents a tradeoff analysis.

Chapter 7

This chapter highlights the results of the research, conclusions, the projected next
steps, and future direction for the projects started in this thesis.

Appendix

The appendix includes a rich set of information including source code, schema
diagrams, and sample configuration files.

Notes
1. Although this is the marketing slogan for SUN Microsystems, it is a very accurate

description for the mentality of computing in general today.

11

Chapter 1. Introduction
Before covering the goals, scope, and assumptions for this research some background
information is required to frame the problem and understand the motivations of
researching this topic.

1.1. Background
Topics covered in this thesis cross multiple segments of the Internet security discipline.
Intrusion detection, incident response, and incident reporting have traditionally been
considered separate tasks, but this separation has only made sense because there is little
technology to link them together. This section begins to build the case for linking and
finding automated ways of interoperation between these separate yet related
information security tasks.

1.1.1. Intrusion Detection Technology
The goal of intrusion detection is to positively identify all true attacks and negatively
identify all non-attacks [R7]. The general process an intrusion detection system (IDS)
takes to accomplish this goal is as follows:

1. receive input data from one or more sources

2. optionally process or normalize data

3. examine data and possibly correlate with previous data to identify
known attacks or filter data known not to be an attack

4. optionally store data for later inspection or correlation

5. output data identified as an attack or potential attack (ie. log files,
notifying a management console or another intrusion detection system,
an instant message or alert to an administrator)

Details of this process, and the current state of the art for intrusion detection practices

12

Chapter 1. Introduction

and technology are available in the a document authored by the Software Engineering
Institute entitled "State of the Practice of Intrusion Detection Technology" [R7].

While current intrusion detection solutions have the ability to successfully identify
attacks inside their specific organizations, none have the capability of sending or
receiving data outside theadministrative domainwhere they are deployed. Also,
current products do not have a mechanism by which to automatically report to an
incident response team or the attack source.

The notion of sharing security information is not merely limited to Internet security. In
the United States, neighborhoods often use an awareness program called a
"neighborhood watch"1 as a mechanism for keeping neighborhoods more physically
secure. The basic premise behind this program is that neighbors will communicate
amongst themselves and with the proper authority in the event that they witness
suspicious activity (e.g. perhaps someone breaking into a house or a strange person
walking the streets). Advances in intrusion detection technology and adoption of
standards will enable similar interactions and allow collaborative security processes to
occur automatically across administrative domains.

1.1.2. Incident Reporting
Although intrusion detection systems do not have native data sharing mechanisms,
there exist best practice processes for sharing data during or in the aftermath of an
attack. Incident reporting is the process where attack sources, intermediary sites,
incident response teams, and other proper authorities are notified of an attack.

Excerpt from RFC1281 [R15]

The Internet is a cooperative venture. The culture and practice in the Internet
is to render assistance in security matters to other sites and networks. Each
site is expected to notify other sites if it detects a penetration in progress at
the other sites, and all sites are expected to help one another respond to
security violations. This assistance may include tracing connections,
tracking violators and assisting law enforcement efforts.

According to the "Incident Reporting Guidelines" document [R16] from the CERT
Coordination Center, the preferred methods for sending incident reports are electronic

13

Chapter 1. Introduction

mail, telephone hotline, or fax. The numerous problems with these methods are covered
in detail later in this chapter.

1.1.3. Computer Security and Incident Response Teams
(CSIRTs)

Over the past 12 years, numerous CSIRTs have formed to address the issue of
coordination and communication in response to security incidents. Response teams
provide a coordinated and organized method of data sharing in their sphere of
influence. This coordination may include the detection, prevention, and handling of
security incidents; understanding the current state of security; and identifing trends in
activity within their constituency. Because the Internet is a cooperative network, there
does not exist one entity with the authority or responsibility for it’s security. Instead,
authority is scattered across logical domains. Table 1-1 highlights a few of the existing
response teams in the government, military, university, and corporate sectors.

Table 1-1. Examples of CSIRTs and their constituencies

Response Team Constituency

AUSCERT Australia (sites in .au domain)

CERT(R) Coordination Center
(CERT/CC)

The Internet

Cisco-PSIRT Commercial - Cisco Customers

DFN-CERT German sites

DOD-CERT Department of Defense systems

Global Integrity (REACT) Commercial and government customers

OSU-IRT The Ohio State University

OxCERT Oxford University IT Security
Team

Oxford University

Information is shared between response teams formally through conferences and
professional organizations such as FIRST (Forum of Incident Response and Security
Teams), as well as informally through mailing lists, email messages, and telephone
conversations. In their paper "International Infrastructure for Global Security Incident

14

Chapter 1. Introduction

Response", West-Brown and Kossakowski highlight that "we need standards agreement
to enable us to make sense of the data we have and to give us a common understanding
of the issues" [R17]. This lack of standards is one of the significant challenges incident
response teams have faced. With both the volume and complexity of security incidents
increasing, these teams must work to find mechanisms to communicate and
interoperate effectively. To date there are not any established standards for exchanging
data about incidents.

1.1.4. What is an Incident?
There is little consensus on the meaning of the word "incident". For the purposes of this
thesis we will consider an incident "a collection of data representing one or more
related attacks"[R7]. Such data can originate from an intrusion detection system, a
human analysis of a data set, or a report from an external entity.

Different types of incidents have different analysis and exchange requirements. Table
1-2 represents the most appropriate mechanism for analyzing, exchanging, and
responding to different types of incidents.

15

Chapter 1. Introduction

Figure 1-1. Incident Type vs. Handling Matrix

Thinking of incident data in these categories is useful because instances of known
activity do not require detailed human analysis; however, new or novel activity require
a significant amount of human analysis to understand the technical details, estimate the
scope, and determine potential risk. This thesis is primarily targeted at learning how to
automatically handle well understood attack activity.

1.1.5. Convergence of Incident Response and Intrusion
Detection

Intrusion detection systems and CSIRTs share many of the same goals. Fundamentally,

16

Chapter 1. Introduction

a CSIRT can be viewed as an intrusion detection system. Both collect and process data
to identify trends and events that require attention, and attempt to provide alerts when
attacks or suspicious activity is identified. CSIRTs have traditionally been defined by
the fact that they do not scale to a large number of incidents, while IDSes typically only
have a limited perspective of the data collected. Nevertheless, this distinction is
beginning to blur as as intrusion detection systems become more capable of visualizing
enterprise level security issues and response teams begin utilizing automated
mechanisms to exchange and data.

1.1.6. Internet Security Challenges
The following sub-sections highlight the problems with Internet infrastructure security
and the current practices of handling security incidents.

1.1.6.1. Security Awareness

In haste to reap the benefits the Internet has to offer, computers are often connected
without considering the risks of electronic attack. Ultimately, this lack of security
awareness leads to a global security problem by ensuring there is a constant pool of
vulnerable machines available for compromise. CERT states, "It has been our
experience that the first time many organizations start thinking about how to handle a
computer security incident isafter an intrusion has occurred" [R18].

1.1.6.2. Security Dependency

Another often overlooked aspect of Internet connectivity is that the security of one
machine is direct related to the security of all other machines on the Internet. The past
12 years have brought many examples of widespread high impact attacks affecting large
portions of the Internet. Many are familiar with the 1988 Morris Worm2, the widespread
denial of service attacks of 19983, the 1999 the Melissa Virus4, and the distributed
denial of service attacks in February of 20005. Each of these incidents clearly highlights
the security interdependency concept. A successful infrastructure attack requires
exploitation of vulnerability across multiple machines within multiple domains.

Combining the nature of the Internet, a network with no central control or authority,
with the fact that current security technologies are focused on protecting only the

17

Chapter 1. Introduction

perimeter within which they are deployed, the need for an infrastructure to quickly and
automatically share data about ongoing attacks becomes apparent. Such infrastructures
could enable automatic collaborative coordination and response to attacks affecting a
large portion of the Internet.

1.1.6.3. No standard representation of intrusion data

Problems with incident data collection and processing, and interoperation of intrusion
detection systems are based on the fact that there is no standard for representing
incident data. Human intelligence is required to interpret and understand the essence of
an incident report.

1.1.6.4. No standard for exchange of intrusion data

In addition to an inadequate standard representation, there is no standard protocol to
exchange incident data. Currently, email, telephone calls, and fax are the accepted
transport protocols for exchanging incident data. However, these techniques do not
scale.

1.1.6.5. Human effort in handling incidents

Because there are no standard mechanisms for automatically exchanging intrusion data,
human effort is required in every step of the process.

Interpretation of an incident report begins when an email-based incident report is first
examined. Because of the wide variety of ways data can be structured within email
messages, some processing such as decrypting (e.g. PGP), decoding (e.g. uuencoded,
base64), or passing messages through an interpreter (e.g. MIME, HTML, MS Word)
may be necessary even before being able to read an incident report. Once the incident
report is in a readable format, a human must interpret the data. This process could
include interpreting the meaning of the text provided, parsing log files, examining
source code, or analyzing binary files.

Current incident reporting processes are too expensive to scale because humans are the
critical component.

18

Chapter 1. Introduction

It is not just the CSIRTS which are overwhelmed with processing the reports. The
system administrators who report the incidents often do not have the resources to
submit security incidents. CERT/CC has found that the most common reason that for
not reporting an incident is that the process is simply too cumbersome and time
consuming.

1.1.6.6. Human error and inconsistency

Humans are far from perfect; using human effort to represent, exchange, extract, and
record data can lead to typographical errors or misinterpretation of intrusion data.
Furthermore, the lack of a a standard natural language vocabulary for representing
attack data only further exacerbates the problem.

1.1.6.7. Other

Fear that exchanging incident information will compromise or implicate weak security
practice is another significant impediment to security data exchange. Many companies,
government agencies, and organizations treat any data collected as a result of a
successful or failed attack as highly sensitive. Even worse is not reporting data that
implicates compromise at other sites. This behavior is tantamount to seeing someone
being mugged or attacked and doing nothing about it. The net result of this behavior is
quite favorable to theblack hatcommunity since vulnerabilities tend to persist longer
before fixes are available, signatures to detect attacks take longer to become
incorporated into intrusion detection systems, and statistics about security trends are
more difficult to estimate. Fear of reporting or exchanging incident data leads to less
global security awareness and a more vulnerable global network infrastructure. The end
result is that site administrators are forced to make risk management decisions without
supporting data.

1.2. Objectives
The thesis explores the feasibility of creating infrastructures for automated reporting,
exchange, and analysis of incident data across administrative domains. The design,

19

Chapter 1. Introduction

implementation, and testing of a prototype system comprises the bulk of the research.

1.3. Scope, Limitations and Assumptions
Limiting the scope and identifying assumptions was critical in defining an attainable
research goal. From the onset, the following restrictions were placed on the thesis.

• The algorithm or technology used to detect attacks is assumed to function properly
and all information provided by sensors is assumed to be correct.

• Apprehension to report or exchange incident data is assumed to be entirely a social
issue without technical merit; thus, solving this social problem is not considered in
the scope of this research.

• The prototype architecture is designed to crossadministrative domains; however,
internationalization issues are not addressed.

Notes
1. see http://www.sherriffs.org/crime_prevention.htm for more details

2. On November 2, 1988 the Morris Worm was launched and quickly had a significant
impact across a large portion of the Internet. This was the first major security wake
up call for the Internet. See http://www.worm.net

3. see http://www.cert.org/summaries/CS-98.02.html for more information

4. see http://www.cert.org/advisories/CA-1999-04.html

5. see http://www.cert.org/advisories/CA-2000-01.html

20

Chapter 2. Technology Review
Internet security has been a topic of research since the existence of the Internet. Many
of the problems addressed in this thesis have been identified or addressed by other
research projects. Examining existing research helped determine scope for our research.

2.1. Standard Formats
Recognizing that standard formats are a prerequisite for technology adoption in the
intrusion detection and incident reporting industries is not a new idea. "If ID systems
are to evolve into a robust, mature market, open standards must be developed to address
this issue" [R19]. Below are some existing contributions in the security data exchange
standardization efforts.

2.1.1. CIDF
The basic premise behind the Common Intrusion Detection Framework is
"standardizing formats, protocols, and architectures to co-manage intrusion detection
and response systems" [R20]. This effort has made substantial progress in defining a
language (CISL: Common Intrusion Specification Language), API, and architecture.
While this standardization effort has produced some excellent work, it has been
hampered by a lack of adoption by intrusion detection vendors and remains largely a
research effort.

2.1.2. IDWG
To address the lack of commercial support in the CIDF, researchers involved in that
project created the Intrusion Detection Working Group (IDWG) within the IETF. The
following excerpt from the IDWG charter explains the goals and purpose of the group
[R22].

The purpose of the Intrusion Detection Working Group is to define data formats and
exchange procedures for sharing information of interest to intrusion detection and response

21

Chapter 2. Technology Review

systems, and to management systems which may need to interact with them. The Intrusion
Detection Working Group will coordinate its efforts with other IETF Working Groups.

The outputs of this working group will be:

1. A requirements document, which describes the high-level functional requirements for
communication between intrusion detection systems and requirements for
communication between intrusion detection systems and with management systems,
including the rationale for those requirements. Scenarios will be used to illustrate the
requirements.

2. A common intrusion language specification, which describes data formats that satisfy
the requirements.

3. A framework document, which identifies existing protocols best used for
communication between intrusion detection systems, and describes how the devised
data formats relate to them.

The Intrusion Detection Message Exchange Format (IDMEF) is the XML-based
encoding format proposed by the group. To avoid the pitfalls of CIDF, work by Joe
McAlerney at Silicon Defense has attempted to transition this proposed standard into
the Snort [C4] intrusion detection system.

The IDWG is also defining protocols for transmission and communication of IDMEF
messages. The Intrusion Alert Protocol IAP is the current proposed protocol.[R24]

The differentiating factor between the IDWG and the research in this thesis lies in the
layer of abstraction at which data is being standardized. The IDWG is concerned with
standardizing analysis results from current intrusion detection systems. On the other
hand, this thesis is exploring the representation of raw network data.

2.1.3. IODEF
The Incident Object Description and Exchange Format (IODEF) is a new standards
effort intended to "create a uniform incident classification framework that fully
describes an incident" [R32]. This effort is driven largely by participants from the
incident response community to enable easier data exchange when reporting incidents,
and to create a baseline for enabling trend analysis. Because both the IODEF and
IDWG efforts are focused on standardization of higher level analysis, they can make
use of the work in this thesis to begin establishing a standard representation of the

22

Chapter 2. Technology Review

underlying raw data.

2.1.4. tcpdump and libpcap
The libpcap library[C8] is an API used to capture network traffic. Because of its
widespread use, this library is important to recognize as a defacto standard. Several
network based intrusion detection systems, network sniffers, and network data
processing tools can inter-operate and exchange data simply because they use the
standard libpcap format files for storing raw network traffic.

Tcpdump is a tool that provides an easy interface to the functionality of the libpcap
library and is capable of displaying network data in human readable format. The human
readable output from tcpdump is a standard way of representing network data when
reporting intrusive, anomalous, or suspicious traffic.

2.1.5. Other work
Finding standard ways to represent intrusion and incident data is not a new concept.
There have been a number of other papers and research projects that are related to this
topic. One of the most expansive was a joint research project between CERT and
Sandia to define "A Common Language for Computer Security Incidents" [R25]. This
effort was not intended to provide a comprehensive dictionary, but a minimum set of
high level terms and their relationships.

The focus of this thesis thus far has been on languages to report and represent data after
an intrusion or incident has been detected. Kemmerer, Vigna, and Eckmann point out,
"it is possible to identify at least three classes of attack languages: exploit languages,
report languages, and detection languages" [R26]. For the purpose of this thesis we will
concentrate only on report languanges.

2.2. Intrusion Detection Infrastructure
As networks, intruders, and intrusion detection systems become more sophisticated the
demand for data sharing between intrusion detection components increases. There are

23

Chapter 2. Technology Review

many ongoing efforts to address this issue. In general these efforts differ from the
research in this thesis as they are focused on a singleadministrative domain; whereas,
this thesis is focused on addressing the issues of inter-operation across many domains.

2.2.1. AAFID
AAFID [R27] takes a different approach from the traditional monolithic intrusion
detection systems. This novel architecture uses multiple autonomous agents working
cooperatively to detect intrusions whereby improving the survivability of the system.
This project shares many similarities with our research when facing trade-offs in
architecture, scaleability, performance, and security.

2.2.2. AIDE
The Automated Intrusion Detection Environment (AIDE), funded by the DoD
Advanced Concept Technology Demonstration program, entails building an intrusion
detection infrastructure to inter-operate with existing components (firewalls, intrusion
detection systems, routers, etc) rather than create a standard for new products. Data
from these components is normalized and propagated through a hierarchical
architecture where events can be correlated. The central difficulty with this process is
normalization. With lack of standard methods for data representation, the same data
may have entirely different meanings when coming from different types of systems;
nevertheless, normalization is currently the most practical method until standards
emerge.

Following is an excerpt from the SANS web site: [R28]

The need exists for the fusing of data from multiple disparate sensors into a single display
to enhance intrusion and anomalous behavior detection. This fusing of the data enables the
AIDE system to integrate firewall, Router and Intrusion Detection System log files,
prioritize alert signatures, analyze and correlate data in a near real-time, display this data
into a comprehensive, uncluttered graphical view along with providing a longer term
evaluation of attempted penetrations. The AIDE system incorporates a three-tier
hierarchical encrypted communication system to allow local, regional, and global levels to
share event data. This feature allows correlation across multiple sites to assist in detection
of concerted intrusion efforts.

24

Chapter 2. Technology Review

2.2.3. Emerald
Event Monitoring Enabling Responses to Anomalous Live Disturbances (EMERALD)
is a set of tools designed to handle detecting intrusions across large infrastructures
[R29]. The most applicable piece of work is ASIC (Assessing Strategic Intrusions
Using CIDF) which attempts to correlate CIDF reports to "discern large-scale patterns
of attack, and infer the intent of the adversary."

2.2.4. FIDNET
As part of Presidential Directive 63, the General Service Administration (GSA) intends
to create the Federal Intrusion Detection Network (FIDNET) to monitor federal
networks. FIDNET will gather and analyze information from sensors distributed among
federal agencies [R30]. The GSA will not have a direct administrative control of any of
the sensors, and will only aggregate information from them. The current status of this
project is unknown.

2.2.5. IDIAN
More tangentially related is research from NAI Labs on the Intrusion Detection
Intercomponent Adaptive Negotiation (IDIAN) protocol [R42]. IDIAN is an attempt
for IDSes to dynamically adapt to intrusion stimuli and architectural changes (the
addition of new components) through intercommunication. IDIAN is an IDS-to-IDS
information exchange protocol rather than an aggregation, analysis, and dissemination
architecture for intrusion information. Likewise, IDIAN only intends to interconnect
IDSs in a distributed (but centrally controlled) network.

2.2.6. Shadow
Shadow is a collection of tools initially developed by the US Navy that enable an
administrator to build an intrusion detection capability using tcpdump and other free
software. The effort has grown and is now referred to as CIDER (Cooperative Intrusion
Detection Evaluation and Response)[R33]. SHADOW uses traffic analysis to identify
anomalies; therefore, the system is an excellent complement to the signature based

25

Chapter 2. Technology Review

approach used in this thesis.

2.2.7. SnortNet
Snortnet [R34] is a project started by Fyodor Yarochkin that enables administrators to
build distributed intrusion detection systems. The project shares a number of
similarities with this thesis but does not include methods to handle exchange of data
across administrative domains.

2.3. Incident Reporting Infrastructure
"The need for an international forum to respond to ID security incidents was
recognized in the early 1990s and resulted in the formation of the Forum of Incident
Response and Security Teams" [R17]. Additionally, members of the response team
community have recognized the need for automated mechanisms for reporting,
analyzing, and handling incidents.

2.3.1. AIRCERT
A significant portion of the technology developed for this thesis was jointly developed
as part of the AIRCERT (Automated Incident Reporting to CERT) project [R36]. The
purpose of the AIRCERT project is to enable administrators to automatically report
malicious activity to the CERT Coordination Center with no human interaction. The
hypothesis is that collection and aggregation of such sensor data will enable automated
analysis to identify security trends. The project is currently in a prototype phase where
issues of scalablility and useabilty are being tested.

2.3.2. AUSCERT: Automated Report Processing
AUSCERT has developed a mechanism for automatically receiving and processing
incident reports via email [R37]. The intent of this collection effort is to gather scan
and probe data in order to enable automated cross-correlation and visualization of the

26

Chapter 2. Technology Review

state of security within the .au domain.

2.3.3. GIAC
The Global Incident Analysis Center (GIAC) is operated by the SANS institute. Their
mission is to provide up to date reports of malicious activity submitted by their
international community of system administrators [R41]. They are currently undergoing
research to determine methods of automating the collection and presentation of reports.

2.3.4. INCIDENT.ORG
The INCIDENT.ORG project [R38] did pioneering work in 1999 by aggregating data
from ipchains firewall logs in realtime across a distributed network. The initial release
of the project was successful and provided correlation and trending for the constituency
of reporting hosts. As the project grew, it faced issues with scalability and false
positives. The problems were derived from the fact that data sources were required to
log only unexpected and anomalous traffic, but there was no common understanding
among participating sites of how to do this. The lesson to be learned from this project is
the difficulty in aggregating data from anomaly based sensors. This is one of the
reasons we focused our research on a signature based model.

2.3.5. Other IR Infrastructure Projects
There are other related incident reporting projects. There is a project called Voyeur
from the Computer Sciences Corporation, yet we were unable to find any
documentation and information with more details. Another recently announced project
is www.dshield.org. That project is involved in aggregation and discovery of active
attack sources.

2.4. Other Related Projects
There are a few other projects worth noting which are not easily classifiable.

27

Chapter 2. Technology Review

2.4.1. Mailing Lists and Web Sites
In addition to response teams and the projects mentioned above, mailing lists and web
sites are useful for building collaborative intrusion detection capability. The "incidents"
mailing list [R40] at securityfocus.com is a prime example of a successful mailing list
for exchanging incident information. Likewise, the GIAC website [R41] from SANS
demonstrates an an online community for exchanging incident data.

These forums provide an effective method of communication and collaboration;
however, they face the same problems described in chapter 1 as they rely on human
interaction for data flow and analysis.

2.4.2. SnortSnarf
Developed by Silicon Defense, SnortSnarf [R39] is an analysis and presentation tool
similar in functionality to the ACID tool developed as part of this thesis. SnortSnarf can
be used to process Snort [C6] text log files and present the data more conveniently
through web pages.

2.4.3. Event Notification
A number of open source projects have formed around building publisher subscriber
messaging and queuing architectures. During early research phases some were
considered as possible components for developing the prototype system. Notably, we
considered openqueue1, xmlblaster2, and siena3. Nevertheless, we decided not to use
any of them because they were in early development stages at the time.

Notes
1. http://openqueue.sourceforge.net

2. http://www.xmlblaster.org

3. http://www.cs.colorado.edu/users/carzanig/siena/

28

Chapter 3. Methods of Research
This chapter covers the strategies and methods used to pursue our research objectives.

3.1. Open source software
One of the motivations for this thesis is the lack of open standards in the Internet
security industry. Given that the majority of open standards on the Internet are driven
by open source software projects, the use of open source for this thesis was imperative.

The defining property of open-source is that source code is readily available to
examine, modify, and extend as required. With code in the open, no architectural
components are "black-boxes"; that is to say, all functionality can be scrutinized not
only for inappropriate or malicious behavior (i.e. trojan-horse), but also for possible
design flaws or implementation errors. In addition to increased trust and reliability,
public scrutiny brings increased portability, useability, and quality.

3.2. Reuse of code
Existing open source software projects provide the bulk of the functionality for the
prototype system. Therefore, the majority of the implementation work was in providing
mechanisms for data to flow between existing technologies.

3.3. Working with the CERT/CC
Throughout this research we worked with the CERT Coordination Center in designing
and implementing a prototype for automated incident data collection that culminated in
AIRCERT1. Working with CERT provided an excellent environment for testing and
developing this research in a real operational environment.

29

Chapter 3. Methods of Research

Notes
1. http://www.cert.org/kb/aircert

30

Chapter 4. Architecture
The architecture to collect incident information consists of four crucial components: a
sensor, collector, backing store, and an analysis engine (see Figure 4-1).

Figure 4-1. Prototype Architecture

4.1. Sensor
A sensor detects security-related events and reports them to a central collector. Any
device capable of supporting remote logging and the necessary alert encoding format
(i.e. SNML, see Section 4.3.2) can be a sensor. Intrusion detection systems make
effective sensors since they are specifically designed to detect events of security
interest. However access-control or transit devices such firewalls and routers will also
serve well. In order for the architecture to accomplish the stated goals, a large number
of sensors, regardless of their type, must be deployed Internet-wide.

Two requirements defined by COAST for a "good intrusion detection system" also
apply to sensors [R6].

31

Chapter 4. Architecture

• It must run continually without human supervision.A primary goal of the
architecture is to enable automated incident reporting to solve many of the current
bottlenecks with human reporting. Therefore, the detection activity of the sensor
must entail very little human intervention.

• On a similar note to above, it must resist subversion.Not only are the monitored host
possible targets, the sensor may be as well. Great effort must be put into both the
implementation and deployment to ensure that the intended detection and logging
functionality of the sensor is not subverted.

In addition, the constraints of the prototype system introduce the following additional
requirements:

• Sensors must be able to communicate with the collectors.Communication with the
collector dictates that the sensor has the ability to encode its alert data into the proper
format as well as understand the collector supported transport protocol. Furthermore,
the security related events detected by the sensor must be transmitted to the collector
in a "timely" manner, but not necessarily in real-time.

• Sensors must be able to contend with sporadic disconnects from the collector server.
The reality of Internet connectivity dictates that communication with a collector
server will not be possible under certain circumstances. The inability to
communicate may be the result of any number of factors: unbearably high network
latency, denial of service (DoS) against the collector server, or disconnection from
the Internet. The sensor should be able to cache alerts for a "reasonable" period of
time for retransmission to the collector when communicate becomes possible again.

• Participation in the prototype infrastructure must not diminish the usefulness,
performance, or capacity of the local sensor.The deployed sensors do not merely
collect data for the purposes of this prototype system. Rather, each sensor has some
locally significant data collection responsibility that cannot be impeded by the
additional incident reporting. It follows that the additional remote reporting also
must not affect the false positive or negative rate of the underlying detection engine.

• Sensors must support a distinction between a local and remote configuration.Events
of concern from the scope of the local domain are different than those from a
cross-administrative domain perspective. For example, a particular system
administrator may want to be informed of all port-scans against his hosts. However,
such detail is too specific when collecting and analyzing event across the Internet.
Thus, there must exist granularity in the type of reporting that is done remotely,

32

Chapter 4. Architecture

independent of local logging. However, all remote configurations should be subject
to local examination and approval.

• Sensors must support locally defined sanitization parameters.Suspicious events
logged by the sensor may contain sensitive data from the heart of an internal network
(e.g. IP addresses, contents of a packet payload which could contain email or
passwords). As a consequence, organizations may be apprehensive about reporting
complete alert data to an organization outside of their control. Allowing granularity
in the type of information that is reported will allay privacy and confidentiality
concerns. However, in order to aid in analysis, the implementation of these
sanitization facilities should be done in such a fashion that it is possible to
distinguish between data that is missing or incomplete and that which was
intentionally sanitized.

• Compromise of single sensor must not undermine the integrity of the entire system.
Since each sensor will be deployed across administrative domains, the compromise
of a sensors is inevitable. Nevertheless, a compromised sensor should not increase
the ease with which any other architectural component can be subverted.

• Sensors should be easy to configure.Minimal knowledge should be required to
configure a sensor minimal and the configuration process should be automated as
much as possible.

4.2. Collector
A collector server serves as the aggregator and logging entity for alerts collected from
sensors deployed across administrative domains. The collector is a network server
responsible for accepting an alert stream, validating its correctness, and finally parsing
and writing each data element into a database.

The primary purpose of the collector is to eliminate direct communication between
sensors and the database. Within a single domain, it may be acceptable for sensors to
log directly to a database; however, this type of logging does not scale across
administrative domains. The single driving constraint lies in that neither the
components in a multi-administrative domain infrastructure, nor the communication
paths between them can be trusted. Thus, strong cryptography and authentication must
be employed on the channel. It follows, that it is both infeasible (e.g. administration,
performance) and insecure to give every sensor in the architecture direct access (e.g. an

33

Chapter 4. Architecture

account) to a database. Furthermore, the process of aggregating alerts extends beyond
merely storing them in the database. A collector allows additional logic to be applied
and operations to be performed on the data before it is stored.

The following requirements are imposed on the collector server:

• The process of aggregating and processing alerts must highly scalable.A collector
server will potentially have to communicate with a multitude of sensors that can be
transmitting simultaneously. Therefore, its architecture must have a low overhead per
transaction, and allow for a large number of concurrent transactions.

• The collector must be a bastion host.As a central component of the prototype
architecture, the collector will be a highly visible target. Great effort needs to be
placed into ensuring the quality of the data flowing into database and the graceful
degradation of service as the load increases. With regards to ensuring quality data, it
should not be possible for any alert to be processed without emphatically verifying
from which sensor it arrived. Furthermore, all malformed, crafted, or invalid alerts
should be immediately discarded. Finally, it should not be possible attack the
collector’s availability at the application layer.

• Each collected alert must be uniquely identifiable.Each sensor can uniquely identify
every logged alert locally. However, there is no guarantee that this identifier is
globally unique across all sensors. The collector server, as a central logging entity,
must generate a unique identifier for each alert it processes and stores. Discarded
alerts need not have unique identifiers.

4.3. Communication

4.3.1. Channel
The sensor and collector communicate over a logical, secure channel across the
Internet. This channel uses in-band signaling such that both data and control
information are transported over the same link. The sensor submits alerts to the
collector and in turn receives back status information from the collector.

The channel has very strict security and performance requirements.

34

Chapter 4. Architecture

• All entities communicating on the channel must be authenticated.All authentication
must be mutual such that both entities can verify each other’s identities. It should not
be possible for anonymous communication to occur.

• The channel must be private and tamper-proof.The confidentiality of all the data
must ensured to all but the two end-points of communication. No intermediaries,
even entities in the same administrative domain as one of the end-points (e.g.
routers), should be able to read the traffic. Furthermore, it should not be possible for
an attacker to modify the traffic without detection.

• The transport protocol must lend itself to high-volume transactions.In order to
support the necessary volume, the underlying protocol must have an efficient
connection initialization and tear-down sequence.

4.3.2. Data encoding
Each sensor type has its own internal characterization of alerts. However, in order for
each of them to be submitted to a central authority, they must first be normalized into a
common representation. Without a common representation, the collector server would
have to understand and decode as many formats as there are sensor types. This
decoding would bloat the server to an unmaintainable program as well as a severely
impacting performance.

The alert encoding format must have the following properties:

• Alert encoding must be generated efficiently.Alerts can be triggered at an extremely
high volume. The process of converting the native alert representation to the
common encoding format must be able to support this rate. Furthermore, the
computational and memory overhead to perform this conversion should be minimal
since few assumptions can be made about the available resources of the sensor.

• The encoding language must be easily extensible.The encoding language will
inevitably have to evolve to allow for new sensor types. All efforts should be made to
leave the language as flexible as possible to accommodate new types of data.

• Machine parsing of encoded alerts must be efficient.The collector server will have to
process a huge number of alerts. The process of extracting and validating the data
from the alerts must be relatively efficient to allow for the necessary scale.

35

Chapter 4. Architecture

• The encoding must be human-readable.While the ultimate goal of the encoding
scheme is to facilitate automated processing, an analyst should still be able to view
the alert stream and still understand what data is being sent.

4.3.3. Feedback protocol
The "feedback" protocol will be the rudimentary mechanism by which status on the
processing of an alert is returned to the sensor by the collector. In a sense, it is also a C2
(command and control) protocol that allows a central authority (collector) to change the
behavior of the remote and subservient entities (sensors). The requirements imposed on
the encoding language also apply to the feedback protocol.

4.4. Backing store
The backing store is a database (permanent store) in which alerts detected by the sensor
are stored for later analysis.The database schema implemented in this store is a
representation of the common alert encoding format.

There are two levels of backing store in the prototype architecture.

• TheLocal databaseis situated in the same administrative domain as the sensor. It is
exclusively controlled by the sensor operator and is the location where alerts would
be logged without any extensions created by the prototype. The presence of this
database (and the information stored in it) is transparent to the goals of the prototype.

• TheCentral databaseis the repository of alerts aggregated from sensors across
administrative domains by the collector server. There is no direct connectivity
between the central database and the sensors or the sensors’ operators. The central
database is not merely a larger, centralized instance of a local database. Rather, the
central database contains a superset of the data found in the local database. This
additional data is meta-information about how the alerts were collected.

The backing store has the following requirements imposed on it:

36

Chapter 4. Architecture

• Access to the stored alerts must be efficient.The database will grow to an immense
size over time. However, there is only value in the data if it can be analyzed
effectively. It should be possible to efficiently (i.e. random access) extract alerts.

• The owner of no submitted data can be ambiguous.The database structure must
always be able to identify the sensor which submitted every particular data element.

4.5. Analysis Engine
The analysis engine examines the alerts collected in the database for
cross-administrative domain events, attack trends, and will ultimately use this alert data
to assess the state of security on the Internet. The results of this analysis will be the
added value given to the prototype participants for submitting their data.

37

Chapter 5. Implementation

5.1. Sensor Implementation: Snort
The system prototype was implemented using the network intrusion detection system
Snort as the sensor. The author of Snort, Martin Roesch, describes it as follows [C4]:

Snort is a lightweight network intrusion detection system, capable of performing real-time
traffic analysis and packet logging on IP networks. It can perform protocol analysis, content
searching/matching and can be used to detect a variety of attacks and probes, such as buffer
overflows, stealth port scans, CGI attacks, SMB probes, OS fingerprinting attempts, and
much more. Snort uses a flexible rules language to describe traffic that it should collect or
pass, as well as a detection engine that utilizes a modular plug-in architecture. Snort has a
real-time alerting capability as well, incorporating alerting mechanisms for syslog, a user
specified file, a UNIX socket, or WinPopup messages to Windows clients using Samba’s
smbclient.

Snort has three primary uses. It can be used as a straight packet sniffer like tcpdump, a
packet logger (useful for network traffic debugging, etc), or as a full-blown network
intrusion detection system.

5.1.1. Snort Architectural Overview
Snort is designed with a multi-stage, piped architecture that reads and compares
network data against a set of attack signatures. Any signatures matches are logged to

38

Chapter 5. Implementation

the output facility (see Figure 5-1).

Figure 5-1. Snort Architecture

5.1.1.1. Input

Snort has the ability to read packet data directly off the wire in real-time using the
libpcap1. In addition, raw network data can be captured and stored with the
packet-sniffer tcpdump2 and later inputted back into Snort for off-line analysis. This
latter scenario is highly desirable in circumstances when deploying an IDS is not
possible due to an inordinate amount of traffic.

5.1.1.2. Detection core

The detection core compares attack signatures [C6] (see Example 5-1) from a
configuration file and the input data stream for possible matches. The functionality of
detecting attacks is separated into stages handled by a preprocessor and a processor.

Optionally, preprocessors may accept the raw data stream and converts it into a
common representation to prevent attack obfuscation. This normalization process
includes TCP stream reassembly, IP fragment reassembly, and HTTP escape code
decoding. Without this abstraction step, a different signature would have to be written

39

Chapter 5. Implementation

for every possible representation of an attack; and even then could not be detected at all
variants. For example, in order to foil older IDSes, intruders would explicitly fragment
their exploit across extremely small IP fragments. Thus, when compared on a single
packet basis, no malicious activity could be detected by the IDS. However, when the IP
stack reassembled all the fragment packets, the exploit was still intact [R9].

Another unintended but widely employed detection technique uses preprocessors to
identify attacks that are difficult to characterize with mere signatures. These novel
preprocessor modules include a port-scan detection engine and a network traffic
anomaly detector (e.g. Spade [C5]).

The processor in turn accepts the normalized data from the pre-processor and does all
the necessary comparisons between the data and signatures to find matches.

Example 5-1. Sample Snort Rule

alert tcp any any -> $HOME 143 (msg:"IMAP Buffer Overflow!";
content:"|9090 9090 9090 9090|";

depth: 16; offset: 5;
content:"|E8 C0FF FFFF|";

depth: 10; offset: 200;)

The above Snort rule detects an "IMAP buffer overflow"
triggered under the following circumstances

- TCP protocol
- destination port of 143
- payload contains the NOP sequence of "9090 9090 9090 9090"

starting with the 5th-byte in payload and matching the
next 16-bytes (bytes 5-31 of the payload) AND

- payload contains the byte sequence of "E8 COFF FFFF"
starting 200th-byte into payload and searching in the next
10-bytes (bytes 200-10of the payload)

5.1.1.3. Output plug-ins

Output plug-ins are the facility by which alerts triggered by the processor are logged.
Snort supports a number of output targets such as syslog, flat-file, raw TCP socket,
WinPopup, and database.

40

Chapter 5. Implementation

5.1.2. Required Snort additions
While Snort provided the raw detection facilities, significant changes were still needed
to facilitate the goal of incident reporting in a larger infrastructure.

• Alert encoding:The native Snort logging formats were inadequate for a distributed
infrastructure since most were not scalable for high volume data logging and
analysis. Among the existing candidates, only database logging would scale in size,
but it did not lend itself to easy or secure network transport across administrative
domains. Therefore, a separate output plug-in (spo_xml) was developed to encode
alerts in XML (see Section 5.3 for details).

• Remote logging infrastructure:Snort had no support for secure remote logging over
which alerts could be sent. Therefore, the output plug-in designed to encode alerts in
XML (spo_xml) also had extensive network communication functionality added to
facilitate secure and efficient communicate with the collector server (see Section 5.2
for details).

• Simultaneous local and remote configuration:Snort provided no distinction in the
signature set or logging options for those events logged locally and remotely. Since
these configurations could possibly be different, and the prototype is required not to
disrupt the existing local functionality, developing support for different classes of
logging was necessary. While in development of the prototype, Andrew Baker
(andrewb@hiverworld.com) contributed this exact functionality to the Snort
code-base obviating the need to develop this code independently. With this
contribution, completely different rule sets or even those that overlap can log to
different output facilities. For example, all detectable alerts could be logged to a
local database, but only buffer-overflow and certain mail-virus alerts would be
logged and reported remotely.

• Sanitization:With the remote logging introduced, client-configured sanitization for
the source or destination address, and the payload contents was implemented directly
into the XML encoding plug-in. This functionality allows the sensor to report as
much information as the organization feels is appropriate.

41

Chapter 5. Implementation

5.2. Collector Implementation: Apache
The collector server was implemented using the Apache Server which is a "robust,
commercial-grade, featureful, and freely-available source code implementation of an
HTTP (Web) server." [C3]

5.2.1. Apache Architecture
Apache is designed with a highly modular architecture and implemented as a
pre-forking server. The prototype made use of this extensible architecture using the
module API to developmod_air . The prototype component,mod_air , extends the
Apache core and builds the prototype functionality directly into the web server daemon
(httpd).

A pre-forking, multi-process implementation is the major reason behind Apache’s great
scalability (note: the pre-forking architecture only applies to UNIX. Under Windows,
Apache runs as a multi-threaded process). At start-up, Apache spawns a master process
(httpd) to handle the reading and processing of the configuration file (see Figure 5-2).
Next, all modules, includingmod_air , are also initialized in the Module Initialization
phase. Later, this master process fork()s multiple instances of itself in the Child
Initialization phase. These newly forked children are collectively referred to as the
child pool. After each child spawns and initializes, the server enters the Request Loop
phase waiting to service client requests. The child pool is exclusively responsible for
handling all connections from the sensors. The master process that spawned the
children never handles requests. In order to increase parallelism if the load on the
server should grow, the master process will grow the child pool (i.e. fork() more
children to serve the requests). In turn, when the load subsides, these excess children
will be killed. Several "spare" children are always be kept in order to service sudden
spikes in the number of requests [C2].

42

Chapter 5. Implementation

Figure 5-2. Apache Life-cycle

Source: Writing Apache Modules with Perl and C [R45]

5.2.2. Apache Additions
Developed as an Apache module, the collector component hooks the incident reporting
functionality into the Request Loop replacing the "typical" web server behavior. Instead
of serving a web page or spawning a CGI process for a client request, Apache will
invokemod_air .

This selective behavior can be further understood with a closer examination of request
handling by the Request Loop. Within Apache, all of the server functionality is highly
modular. The core server is only responsible for the intricacies of handling raw network
connections and passing data from these connections to the appropriate module for
processing. It is the responsibility of the invoked modules to extend and fulfill the real
server functionality.

Communication with sensors occurs over SSL/TLS. Initially, the core server will
accept the sensor’s TCP connection and invokemod_ssl , a module that will handle the

43

Chapter 5. Implementation

negotiation of an SSL connection. With an SSL connection established, the actual
request must be identified and serviced with the appropriate handler. This identification
usually occurs based on the extension of the requested file or the type of request made
(e.g. POST, GET). Each handler is a different module (e.g. PHP extension invokes
mod_php, a CGI script invokes mod_cgi). POST requests for files with the.air

extension will result in Apache ignoring the default handler (mod_cgi) and forcing
mod_air to process the request.

Mod_air executes in three stages when processing and logging an alert. Each of the
three steps of authentication, throttling, and validation must be completed in this order,
but it is possible for any step to abort without an alert being logged to the database.

• TheAuthenticationphase uses an X.509 certificate [R10] (presented by the sensor
during the SSL connection) to explicitly identify the sensor with which the collector
is communicating. If a sensor’s certificate is invalid or unknown, the corresponding
alert is dropped.

• TheConnection throttlingphase prevents the server from being flooded with alerts
from a particular sensor. This functionality involves creating a shared-state among all
the Apache processes (i.e. the child pool) using shared memory segments. An entry
is made in a hash table when the sensor communicates with the collector for the first
time. Thereafter, the arrival time of every alert is noted in this corresponding table
entry allowing the number of arrived alerts within a given time window to be
counted. Should this number exceed a certain threshold, the alert is dropped.

• TheValidationphase involves processing the submitted alert. Using the libxml 2.0.03

library, a SAX parser examines the XML encoded alerts to validate the correctness
of the data and writes the alerts into a database. Should the XML be malformed (i.e.
incorrect XML as defined by the DTD) or invalid (i.e. lacking the proper data), the
alert will be dropped. Prior to writing an alert to the database, the collector assigns a
globally unique identifier using a sensor identifier and a sequence number. A
globally unique sensor identifier is created by taking a combination of the sensor’s IP
address, interface name, and BPF parameters.

Regardless of success,mod_air returns status on the processing of the alert via a
feedback protocol (see Section 5.3) to the sensor.

44

Chapter 5. Implementation

5.3. Communication Implementation
Communication between the sensor and collector requires a number of protocols to
facilitate the necessary requirements (see Figure 5-3). All hosts communication is done
over TCP/IP; however, in order to instill the necessary security properties, TLS 1.0
(SSL) must also be layered on top. Next, HTTP is used to encapsulate the custom.
Using HTTP imposes request-reply communication semantics between the sensor to
the collector. The sensor initiates communication with an HTTP POST request [R11]
passing alerts (encoded via SNML) and the collector returns status (with the feedback
protocol) via an HTTP reply.

Figure 5-3. Prototype Protocol Stack

All attempts were made to re-use as much code as possible for the well-defined
protocols. Obviously, the operating system provided the TCP/IP stack. The OpenSSL4

library and API were used to add TLS functionality to Snort (i.e. the sensor) and HTTP
support was written by hand.Mod_ssl 5 developed by Ralf Engelschall endowed the
server with TLS support, while Apache was the code-base for HTTP. Only the
encoding format and feedback protocol were newly developed to fulfill the needed
prototype functionality.

5.3.1. Simple Network Markup Language
The encoding format was implemented with the Simple Network Markup Language

45

Chapter 5. Implementation

(SNML), a rigorous Document Type Definition (DTD) which defines the encoding of
any IP network data in XML (see Appendix D). An SNML document consists of two
sections: detection information and stream contents (see Example 5-2). The detection
information is the meta statistics about the triggering of an alert: timestamp, signature,
and sensor statistics (name, interface BPF parameters). The stream content is the
network packets (i.e. packet header and payload) which triggered the alert.

Example 5-2. Sample SNML document

<report>
<event version="1.0">

<sensor encoding="hex" detail="full">
<interface>eth0</interface>
<ipaddr version="4">10.0.0.1</ipaddr>
<hostname>samplesensor.net</hostname>

</sensor>
<signature>PING-ICMP Destination Unreachable</signature>
<timestamp>2000-11-27 03:12:51-04</timestamp>
<packet>

<iphdr saddr="10.0.0.1" daddr="10.0.0.2"
proto="1" ver="4" hlen="5" tos="192" len="140"
id="27894" ttl="255" csum="63475"

<icmphdr type="3" code="3" csum="61863">
<data>000000004500005C9CE900007E3149F18003040D801251730800

FF25020086DA00
00
0000000000000000000000000000000000004500003902000000
40068CFB8002514518405F1D</data>

</icmphdr>
</iphdr>

</packet>
</event>

</report>

5.3.2. Feedback protocol
After processing the alert, the collector replies to the sensor with a text-based
"feedback" protocol. The status is returned in the form of a code number and a text

46

Chapter 5. Implementation

description modeled very similar to HTTP return codes (e.g.404 File not found).
However, unlike HTTP return codes, more than one code can to be returned with every
reply (see Example 5-3). There are three categories of possible messages (see
Appendix E for a complete listing): authentication (3xx) status returns information on
the success of identifying the sensor; input validation (4xx) status identifies whether the
alert could be processed; and throttle (5xx) status signals any application-layer
congestion on the channel.

Example 5-3. Sample "Feedback" protocol result

HTTP/1.1 200 OK
Date: Sat, 30 Sep 2000 18:04:49 GMT
Server: Apache/1.3.12 (Unix) mod_air/0.8.4 PHP/4.0.2

mod_ssl/2.6.4 OpenSSL/0.9.5a
Connection: close
Content-Type: text/html

mod_air/0.8.4 300 AUTH_CLIENT_OK
mod_air/0.8.4 500 THROTTLE_OK
mod_air/0.8.4 400 INPUT_COMMIT_OK (1)
mod_air/0.8.4 200 OK

5.3.3. Public Key Certificates
Implementing mutual authentication with TLS/SSL requires that every component in
the system have an X.509 certificate. A self-signed CA issues all certificates, but the
specifics of distribution to each of the sensors occurs outside the normal
sensor-collector communication.

The CA communicates with both the sensor and the collector. Prior to being able to
report alerts, every organization with a sensor is required to visit a web-site to register.
This registration is an out-of-band mechanism for collecting "real" (non-prototype
related) contact information and to validate to whom certificates are issued. Once the
sensor is issued a certificate and submits alerts, the collector server also contacts the
CA to validate the sensor’s certificate against a CRL.

47

Chapter 5. Implementation

5.4. Backstore Implementation: MySQL
The local and central database in the prototype system were implemented with MySQL
3.22.326 using ISAM tables [C7].

5.5. Analysis Engine Implementation: ACID
The analysis engine was implemented as the Analysis Console for Intrusion Databases
(ACID) tool. ACID is a PHP application7 that enables a security analyst to perform
real-time analysis operations on the alert database. Its core functionality includes the
following:

• A search interfacefor finding alerts matching practically any stored field as a
criteria. This criteria can include meta-data on the detection of the alerts (e.g. arrival
time, sensor, signature time) or protocol fields from the packet (e.g.
source/destination address/port, flags, payload). These queries can be made
arbitrarily complex to satisfy almost any parameters.

• Alert Groupsfacilitate more complex analysis by allowing a logical grouping of
alerts on which analysis can be done. It is a quick way to combine multiple searches,
annotate an alert or group of alerts, or to save query results for later examination.

• Alert purgingallows for the deletion of alerts from the database. This functionality is
ideal for removing known false-positives.

• A number ofaggregating statistics and graphscan be generated to get a perspective
on the type of alerts in the database or to glean statistics from a particular query
result: percentage of traffic for each protocol, sensor, or IP address; unique alerts or
IP addresses detected.

Notes
1. libpcap is BPF-compatible library which captures network traffic.

http://www.tcpdump.org

2. TCPdump is packet-sniffer. http://www.tcpdump.org

48

Chapter 5. Implementation

3. libxml2 is a SAX XML library. http://www.xmlsoft.org.

4. OpenSSL is an open-source SSL and cryptography library based on Eric Young’s
SSLeay library. http://www.openssl.org

5. mod_ssl is a module which adds SSL version 2-3 and TLS 1.0 into Apache using
OpenSSL.

6. MySQL is an open-source SQL92 compatible database. http://www.mysql.org

7. PHP is an open-source server-side scripting language. http://www.php.net

49

Chapter 6. Analysis and Interpretations

6.1. Sensor Analysis
Snort was chosen as the first prototype sensor in part because of an open source license
(GPL) that freely distributed its highly extensible code. The Snort plug-in architecture
made it trivial to insert functionality without making significant modifications to the
core code-base. From the non-technical perspective, the nascent Snort community (as
with many open-source projects) is growing, highly active and energized. Therefore,
the users were willing to run the prototype code and return instructive feedback on our
efforts. Furthermore, the community has reached a critical size such that enough useful
data could be collected to validate the infrastructure.

Nevertheless, Snort is a relatively immature product, not yet two years old. As a
consequence, it has several shortcomings in comparison to more long-lived commercial
products. These limitations are evident in some architectural constraints:

• Single-threaded core:Snort currently is implemented as a single threaded process.
This architecture is of concern since it may be possible for alerts to be missed during
high loads. For example, if the logging functionality does not execute in a timely
fashion (e.g. network latency), the output plug-in will remain blocked waiting for the
operation to complete. This waiting precludes the detection of new alerts. While this
deficiency remains a real issue, efforts are currently underway in the Snort
development community to add multi-threading in the next major release. This
would allow all the major Snort components (i.e. input/output plug-ins, detection
core) to run independently of each other.

• Stateless:One of the defining weaknesses of Snort is that alerts are detected only on
the basis of a single packet. While Snort performs fragment reassembly, analyzing
protocol streams is much more effective in detecting malicious behavior. In order to
address this limitation, Chris Cramer of Duke University (cec@ee.duke.edu) has
written a preprocessor into Snort that will do full stream reassembly. While this code
is currently not ready for production use, it will bring Snort to the next level of utility
whereby making the Snort detection engine comparable to commercial IDSes.

• Alert characterization language:Seminal to detecting attacks is the ability to

50

Chapter 6. Analysis and Interpretations

characterize them with signatures. Unfortunately, Snort’s description language is not
very flexible. It has incomplete support for boolean operators between criteria and no
conditional statements (e.g. if ... then ... else). Again, just as shortcomings in the
architecture, Snort is maturing to address this issue. There is currently development
in the Snort community to improve boolean operators support in the next major
release.

• High false positives:Another consequence of a lack of flexibility in the signature
language is a high false positive rate. The particular signature to detect an attack may
not be specific enough to characterize merely the desired exploit. Instead, legitimate
traffic may sometimes also trigger the alert. In other cases, alerts may be legitimately
triggered (i.e. due to attack traffic), but the attack may not be applicable. For
example, an IIS specific exploit could be launched against a host that does not even
have web services enabled. The former issue of legitimate traffic triggering alerts can
only be helped with a more feature rich signature language. However, the latter issue
of inapplicable alerts can be somewhat mitigated with thenmap1 andsnortrules 2

tools. Usingnmap, a list of services running on each host can be identified. In turn,
snortrules can determine the attack signatures that are targeted at monitoring
services which are not present on the network and remove them from the
configuration.

Snort is also not immune from the typical IDS tradeoffs associated with the being
primarily a signature-based, network IDS. Using signature-based detection limits Snort
to detecting only known attacks; while being a NIDS dictates that Snort is only capable
of analyzing network data and recognizing those attacks that can be identified through
packet analysis.

6.2. Collector Analysis
The choice of using Apache as the implementation of the collector server was
influenced by the selection of HTTPS as the alert submission protocol. While a minimal
HTTP server could have been written, Apache provided a number of advantages.

• Quality code base: Using Apache precludes the need to "re-invent the wheel." The
Apache source code is available, well documented, and portable across almost every
UNIX and Windows platform. Apache not only could provide the HTTP protocol

51

Chapter 6. Analysis and Interpretations

code, but outside contributions to the Apache Server Project have also added SSL
extensions viamod_ssl to support HTTPS. Furthermore, open source licensing has
allowed the Apache code to be highly scrutinized and tweaked. Thus, the prototype
was able leverage the highly optimized socket and connection management
code-base.

• Extensible: Apache provides a clean module API through a series of function
callbacks that allows custom functionality to be hooked into the server. Likewise,
using dynamically shared objects (DSO), a technique of dynamically loading
libraries, allows these custom modules to be compiled and build independently
whereby allowing easy distribution [C1].

From a design perspective, this close relationship between the collector implementation
and the transport protocol of HTTP initially seems problematic, especially since this
transport infrastructure has not been fully validated. Should the transport protocol ever
be replaced, the current collector code-base runs the risk be being obsolete due to an
Apache module implementation. Despite these concerns, very little of the collector
implementation is transport protocol specific. Rather, not having to write this portion of
this code was one of the primary appeals of using Apache. Thus, replacing the transport
protocol would only require implementing the corresponding raw connection
management, not the core collector functionality of alert processing.

6.3. Channel Analysis
The communication channel between the sensor and collector needs to guarantee
confidentiality, integrity, and authentication. There were two possible OSI layers at
which to ensure these properties: network (layer 3) or transport (layer 4-5) layer. The
two likely candidates were IPSec [R2] and SSL/TLS [R1] respectively. However, since
not all OS kernels (IP stacks) support IPSec, it was quickly discarded in favor of TLS
which would maximize portability and allow for the widest possible sensor deployment.

6.3.1. Transport protocol analysis
HTTP was chosen as the protocol to submit alerts because it is extremely lightweight
and requires only a minimal footprint into the sensor to implement. Likewise, the
stateless nature of HTTP solved many of the design issues related to sensor

52

Chapter 6. Analysis and Interpretations

connectivity. One of the early concerns in designing the communication semantics
dealt with whether a sensor should always retain an open connection to the collector;
specifically, as to whether this architecture could scale to a large number of sensors.
Using the HTTP semantics of request-reply eliminates constant connections and
obviates the need to identify timed-out links. These semantics also have the highly
desirable property of minimizing the number of open connections on the collector.
Heartbeats, messages sent explicitly to the server to inform the continued presence of
sensor, were also initially considered. However, as the number of administrative
domains increases the status of individual sensors becomes less relevant. Finally, using
HTTP is highly desirable since it is a widely deployed and well understood protocol.

One of HTTP’s major advantages, simple communication semantics, presented some
difficulties. The most obvious constraint was that HTTP (and Apache) is stateless, but
enforcing various connection quotas (thresholds on the acceptable amount of traffic
from a sensor) and database-access policies does require state across connections.
However, keeping extensive statistics at the server and implementing IPC mechanisms
between the Apache processes easily circumvented this stateless-ness.

6.3.2. Data encoding analysis
Analyzing the prototype protocols reveals an inconsistency in the encoding scheme.
Communication from the sensor to the collector is in XML, but the communication
back to the sensor is in normal text. Such a design is quite deliberate. While generating
XML is a relatively straightforward operation requiring only string concatenation,
parsing XML is a much more logic intensive task typically offloaded to a dedicated
parser. Thus, the sensor can easily create the XML with a small footprint, but
processing it would have required an additional XML parsing library. It an effort to
keep the sensor as lightweight as possible (i.e. minimize external library dependencies),
the collector communicates with the sensor with text-based messages that can be easily
processed with standard string handling functions.

6.4. Backing Store Analysis
Early in the design it was obvious that a database was the only possible candidate of a

53

Chapter 6. Analysis and Interpretations

backing store for alerts. Despite being very fast, simple text file logging was deemed to
be wholly inadequate as it would not scale to the proper size, and random access
searching was simply not feasible. Examining the open-source database candidates
drew only two possibilities: MySQL and PostgreSQL3.

Comparing the two candidate databases reveals that MySQL lacks several very key
features in comparison to PostgreSQL. The production release of MySQL does not yet
support transactions (although a beta version of transaction supported MySQL on
Berkeley tables does current exist). Likewise, there is no lock granularity when
accessing the tables. Only table level locking is available. Finally, MySQL does not
support views or sub-selects with its SQL implementation.

Since, PostgreSQL supports all these deficiencies in MySQL, it would seem like the
obvious candidate for the prototype. Nevertheless, MySQL was still used in the
implementation for the sole reason that it is much faster. The MySQL database engine
is optimized for fast writes (INSERTs) which lends itself to the sheer volume of alerts
which must be handled. This speed consideration outweighs any other limitations.
However, selecting was MySQL was not really trade-off since most of its limitation
could be mitigated with additional logic and a creative use of IPCs. Aside from the
speed, MySQL also provided much richer data types which makes the alert storage
more efficient.

6.5. Analysis Engine Analysis
ACID’s implementation in PHP made it easy to develop and flexible to deploy. PHP
provided a very easy construct in which to rapidly create a MySQL-aware application.
Furthermore, as a web-scripting language, PHP precluded the need to write any
sophisticated user interface since one was already inherited from the browser. This
browser paradigm was also popular with users because of the high portably across
platforms and low resource requirements on the client.

The reaction to ACID when deployed in the community was positive, although
surprising. In addition to fulfilling its technical role, ACID turned out to be an excellent
marketing vehicle to advertise the prototype and to entice community interest in
upgrading their software to run the prototype code. It is also this community
deployment which originally uncovered a database scalability issue. ACID would not
run in a timely manner (e.g. long latency to run queries) when used against a database

54

Chapter 6. Analysis and Interpretations

with a large number of alerts (i.e. 300,000 alerts) or during analysis operations
concurrent to high-volume alert logging. Through this instructive feedback, the
database bottlenecks were able to be identified and corrective modifications applied to
the database schema.

6.6. Performance
The collector server and the associated infrastructure code in the sensor have morphed
through various incarnations to arrive at the current prototype. The prototype has been
heavily optimized to perform the specialized task of generating, sending, processing,
and logging alerts.

Since the sensor was already built and the prototype functionality was merely added,
established metrics on "acceptable" performance existed. Evaluating the sensor’s
performance was a matter of comparing the the execution time of an unmodified
version of Snort against a patched version with the remote reporting enabled. This
testing revealed that the prototype largely succeeded in having only a minimal effect on
the sensor’s core functionality.

Analyzing the performance of the collector server was more involved and resulted in an
iterative process since no baseline performance metrics existed. In the initial design, the
collector server was implemented as a Common Gateway Interface (CGI) application.
Under high loads, performance issues became evident when using this paradigm. The
inherent problem with CGI was that a new instance of the application must be spawned
for each request. Thus, for every batch of alerts, the overhead of spawning a new
process is incurred (e.g. Apache formatting the environment with the required
variables, kernel context switches).

The Apache module interface was explored in an effort minimize the penalty incurred
by spawning a new process with every request. A module implementation allows the
custom functionality to run directly inside the server process instead of as an external
process.Mod_air , the implementation of the collector server, is essentially designed as
a minimal POST request handler (which replacedmod_cgi , the default Apache code
for handling POST requests) with XML parsing and DB logging ability. Superficial
testing yielded roughly a 50% performance gain with a module interface
implementation of the same code over the CGI paradigm.

After an efficient architecture for the collector server was established, the

55

Chapter 6. Analysis and Interpretations

communication performance was investigated. Using the original module
implementation under a testing scenario, the latency between the attack detection at the
sensor and the alert logging at the collector took an average of 427 ms (see Figure G-1
in Appendix G). An analysis of the time spent performing each of the operations (see
Figure G-2) revealed that more than 90% of this latency was due to cryptographic key
generation to support the SSL connection. Therefore, cryptography, not the alert
processing, was the major system bottleneck. The central problem lay in the fact that
the semantics of communication required creating and tearing down a network
connection with every batch of alerts sent. With each connection, a new cryptographic
key needs to be generated.

In an attempt to reduce the alert processing latency, an SSL-specific optimization
technique was added. The prototype made use of session caching whereby each
endpoint (sensor and collector) "remembers" the key that was used between them in the
previous session. This caching technique eliminates the need to generate a new key for
every connection and allows the expensive SSL key generation operation to be
amortized over a number of connections. Implementing this technique lowered the
average latency to merely 42 ms (see Figure G-1).

A re-analysis of the time spent in each operation with session caching revealed that
network latency, as well as, collector server processing time were now the most
expensive operations (see Figure G-2). Effectively, the cost of cryptography had been
eliminated in the average case. Even with session caching, session initiation accounted
for about 25% of the total latency, but in real numbers this percentage was only 10 ms.
This optimization increased the speed of the prototype by an order of magnitude. With
these results, it follows that the performance benefits of HTTP (clear-text transport)
instead of HTTPS (encrypted transport) is effectively moot.

Several other performance motivated choices were made with regard to inter-process
communication (IPC) in the collector server. Instead of using disk-based shared
memory via memory mapping (mmap), a shared state was established using System V
kernel semaphores and shared memory segments. Using this implementation of IPC
eliminated any reliance on the efficiency of a disk cache for fast access. In addition,
there are several other transport protocol based performance "tweaks" such as HTTP
keep-alive semantics andmod_ssl fast SSL re-negotiations which were not fully
investigated, but it is believed that they could yield very minor additional benefits.

56

Chapter 6. Analysis and Interpretations

6.7. Scalability
The current implementation of the architecture functions as expected in a single
collector-to-many sensor scenario sustaining up to 22 alerts/second. The major strain
on the infrastructure was the sheer quantity of alerts, independent of which sensors
submitted them. Thus, getting 10,000 alerts from a single sensor rather than one alert
from 10,000 sensors will yield comparable performance. This result is a function of the
state-less semantics of the collector server (HTTP) which require a connection from the
sensor to the collector to be established, processed, and torn-down for every batch of
alerts.

6.8. Portability
There can be no expectation of a common platform when deploying an infrastructure
across the Internet (and administrative domains). Every organization could potentially
be running a different configuration of hardware, software, or network topology. As a
result of this heterogeneity, any proposed design could only make use of open and
well-defined protocols to ensure maximum compatibility.

There is an obvious difficulty in implementing software in such a diverse environment.
Each of the components must not only work on the platform it was developed but also
with all other major operating systems. In order to facilitate this portability, all efforts
were made to use only ANSI-C in the prototype and avoid all platform dependent
assumptions. Furthermore, all the underlying libraries were explicitly chosen for the
highest portability.

Table 6-1. Prototype components portability

Architecture Component Linux OpenBSD Solaris Win32

Sensor Snort X X X X

DB logging
(MySQL)

X X X X

HTTPS logging
(OpenSSL)

X X X X

57

Chapter 6. Analysis and Interpretations

Architecture Component Linux OpenBSD Solaris Win32

Collector Apache 1.3.14 X X X X

mod_ssl X X X X

mod_air X

libxml 2.0.0 X X X X

Backing Store MySQL 2.23.22 X X X X

Analysis PHP 4.0.2 X X X X

ACID 0.9.5 X X X X

Table 6-1 illustrates that the prototype was largely successful in ensuring portable
across platforms. Only themod_air component remains limited to UNIX variants due
to the use System V IPC mechanisms (semaphores [R12] and shared memory [R13]) to
achieve a shared state in Apache. However, migrating to a more portable IPC
mechanisms such as Ralf S. Engelschallmm4 would be trivial to implement.

6.9. Security
The entire prototype infrastructure was explicitly designed and implemented with
security concerns in mind.

6.9.1. Authentication and Authorization
Each of the communicating components of the system is identified via an X.509
certificate. There is no inherent trust relationship between components and mutual
authentication is always employed. Such a scheme not only prevents the obvious attack
from a rogue sensor submitting bogus alerts, but also precludes the possibility of
sensors submitting alerts to a rogue collector. Each sensor is explicitly configured to
submit alerts to a particular collector.

Validating a sensor’s credentials is a two step process. Initially,mod_ssl , the SSL
functionality of Apache, will verify the integrity of the certificate and confirm that the
issuing certificate authority is acceptable. When these criteria are not met, the
connection is terminated even before the prototype routines are invoked. If the

58

Chapter 6. Analysis and Interpretations

certificate is deemed acceptable,mod_air , the alert processing module, is called.
Mod_air further verifies the certificate by checking it against a certificate revocation
list (CRL) to ensure that the certificate is still valid, as well as whether any other
limitations have been placed on the user. Only after this two-phase process is a sensor
considered authenticated. The authorization to send an alert to the collector is implicit.
All sensors which have a valid certificate are also authorized to submit alerts.

One of the issues that always arise when using certificates is the difficulty of
implementing the CRL. The real-time process of connecting to another CA to ask for
validation on a certificate is very expensive and rarely implemented in Internet-scale
applications. As a consequence, certificates are given an indefinite lifetime because
their revocation is almost never verified. However, the architectural design of this
system mitigates this issue by virtue of the fact all certificates are issued by a single,
self-signed certificate under the same administrative control as the collector server.
Thus, there is only one CRL that needs to be checked, and updates to the revocation
database are immediately used.

Deploying a collector server and certificate issuer in the same administrative domain
yields several benefits. The user community that can communicate with the collector
server is closed and well defined. Those entities that want a certificate must register
through the collector server’s CA. This increases security and lowers the authorization
complexity because the mere ability to make an SSL connection to the collector is
contingent on having a proper certificate. If arbitrary certificates from trusted CAs such
as Verisign5 and Thawte6 were accepted, any entity could at least connect to the server.
In such a scenario, another level of authorization beyond a mere certificate would be
required.

A known user community can also increase the speed of authentication. All certificates
can be initially screened on having the proper certificate issuer (CA) without being
passed to the automated incident response prototype (mod_air). Therefore, only valid
requests (and requests from sensors which were only allowed to communicate) are ever
passed up to the prototype for further examination.

6.9.2. Confidentiality
The encryption used by TLS provides a confidential "pipe" between the sensor and
collector ensuring that the privacy of every alert is maintained. The underlying
cryptography employs only strong algorithms: RSA for key negotiations and RC4 for

59

Chapter 6. Analysis and Interpretations

bulk encryption. Likewise, sufficient key size [R43] are used (1024-bit RSA, and 64-bit
RC4) to ensure that brute-force as well as mathematically based cryptanalysis attacks
(e.g. differential, know-plaintext [R44]) are computationally infeasible.

6.9.3. Integrity
The cryptography used by TLS also ensures that the integrity of all data in the
communication channel between the sensor and collector. Using strong hashing
algorithms (SHA, MD5), a message authentication code (MAC) is generated for every
packet rendering man-in-the-middle attacks ineffective. Thus, an attacker will not be
able to modify an alert stream sent to the collector without the changes being detected.

In order to preclude rouge sensors (with valid certificates) from sending bogus or
garbage alerts, heavy input validation is done on every SNML encoded alert. Since
SNML is an XML document, there exist two techniques to verify its validity: check for
well-formed-ness and DTD validation. Well-formed XML dictates that all open tags
have a corresponding close tags. The collector server only accepts well-formed alerts.
The more rigorous testing of DTD validation where each alert document is actually
compared against the document definition is explicitly avoided for performance
reasons. In order to achieve the equivalent effect of DTD validation, hard-coded logic is
used to validate the data-type of elements, verify that mandatory entities are present,
etc. While more efficient, such an implementation necessitates a more complex parsing
algorithm and a source-code level change (sometimes quite extensive) with every
change in the SNML DTD.

6.9.4. Availability
The availability of the collector server to accept and aggregate alerts from various
sensors is of paramount concern. In order help manage the high-loads from many
sensors, several load-balancing techniques can be adopted from web technology.
Round-robin DNS can be used to spit the load among several identical collector servers.
Furthermore, priority (and additional load-balancing) can be introduced on the sensors
via a layer-7 switch (application switch). Priority may be important in order ensure that
"more reliable, strategically place, or representative" sensors get preferential treatment.

The collector servers will be high profile targets for denial of service (DoS) attacks.

60

Chapter 6. Analysis and Interpretations

However, attacks at layer 3 and 4 of the OSI model (e.g. SYN floods [R3], Smurfing
[R4], and dDoS) are outside the scope of this system. The effect of these attacks can be
mitigated with varied degrees of effectiveness with known techniques [R5].
Furthermore, the use of challenge-response messages in TLS/SSL eliminates the
possibility of a replay-based flood attack.

At the application layer (layer-7), the prototype provides explicit protection against
DoS; a legitimate sensor flooding a collector with alerts. The collector assigns each
sensor a quota of alerts that can be sent per threshold of time. Thus, even if a rouge, but
properly authenticated sensor, attempts to flood the collector, these excessive alerts will
be dropped as soon as the sensor’s alert quota has been exceeded.

6.9.5. Security failure consequences
As per the requirements, the implementation architecture attempts to contain the effect
of subversion as increasingly significant components are compromised. As
implemented, the following are the effects on the system if a particular architectural
component is compromised:

• A compromised sensorforces all post-compromise data from the single sensor to be
considered suspect. The attacker who subverted the sensor will have the sensor’s
private key whereby allowing him to send bogus, forged alerts. Nevertheless, the
data of no other sensor is affected. As the number of sensors grows, this type of
security breach is inevitable because the sensor runs in a different policy domain
each with potentially variable regard for "good" security practices.

• A compromise in the issuer (root) certificatewould involve the exposure of the
certificate authority’s private key. Since, the CA’s key is used to generate all
certificates in the system, the attacker could forge any certificate whereby
impersonating any other sensor. This impersonation is possible even without
compromising the sensor in question. When the issuer’s private key is disclosed, the
post-compromise logged alert data from all the sensor is suspect. This type of
security breach would undermine the entire system and would require every sensor
to be reissued a certificate. The private key of the certificate issuer must be tightly
secured.

• A compromised collector serverforces all post-compromise logged data stored in the

61

Chapter 6. Analysis and Interpretations

database from all sensors communicating with this server to be suspect. Likewise,
the confidentiality of all stored data is lost. Since each collector server has a database
credential (username, password) which gives it the privilege to read all records and
add new ones into the database, the attacker can use this login information to
completely bypass the collector server and directly access the database.

• A compromise of the backing store (database)forces all stored data to be suspect.
With this level of subversion, the attacker has violated the confidentiality of the alerts
(i.e. can read all records); and can modify or delete any alert. Compromising the
database is tantamount to undermining the entire system.

• A compromise of the analysis engineis also equivalent to compromising the database
itself. The effective credentials used by the analysis component allows all the
malicious activity possible under a subverted database.

In many of the previously identified scenarios, only the data generated after the time of
compromise is declared suspect. While this distinction seems quite evident in the
theoretical, practical consideration make drawing a conclusion about the integrity of
the data difficult. It may be all but impossible to clearly determine when an
architectural component was subverted. Therefore, it may be required to err on the side
of caution and rollback to a last known "safe" state.

Another important issue to consider is the implications of compromises to the
organization administrating the collector server. If any of the significant system
components are subverted (e.g. collector, database, analysis engine), this will be a
severe blow to the trust relationship held with the reporting organizations (those with
sensors). Such a compromise could impede the future ability of this organization to
collect data.

6.10. Reliability
The prototype infrastructure has been used for several months in a mixed test (high alert
volume) and production (low volume DSL connections) environment with success.

62

Chapter 6. Analysis and Interpretations

6.11. Affordability
The entire prototype can be build from open-source components. Thus, all software can
be acquired at no cost. However, this does not preclude the need for adequate hardware
and a skilled staff in information security, network design, and database administration.

6.12. Extensibility
As a prototype, the components were largely designed as a proof-of-concept.
Therefore, the specific implementation was carefully crafted such that extensions could
be made. However, there is an understanding that as a work in progress, community
review will probably require significant changes to the original code-base. It may also
prove true that as public scrutiny is applied, certain system components will change
dramatically and the originally implementation may need to be entirely rewritten.

6.13. Usability
The implementation went to great length to automate all pieces of the system. The
greatest difficulty of using and installing all the components lies in acquiring and
building all the underlying libraries.

Notes
1. http://www.insecure.org

2. http://www.andrew.cmu.edu/~rdanyliw/snort/index.html

3. http://www.postgresql.org

4. http://www.engelschall.com/sw/mm/

5. http://www.verisign.com

6. http://www.thawte.com

63

Chapter 7. Conclusions
Significant progress has been made in automating the process of collecting security
event data across administrative domains.

7.1. Deficiencies
There are several shortcomings in the current prototype implementation.

• Unidirectional communication semantics:Due to an HTTP-based implementation,
communication between the sensor and collector server can only be sensor-initiated.
The collector server can convey information back to the sensor only by passing it
back in the response message to any sensor submitted alert.

• Database scalability:In environments with multiple simultaneous readers and
writers, MySQL does not scale well due to a locking granularity of an entire table.
The consequences of this shortcoming are most evident when using the ACID tool to
process the database in real-time in parallel to the collector also logging alerts. These
concurrent operations can result in either component being blocked waiting to access
the database; typically, the blocked process will be the lower priority reader, ACID.

• Database design:The collector and local database are not fully normalized.
Specifically, the full text string of the detected signature is stored in each record
instead of as a numeric key which is a foreign key into a lookup table as dictated by
Third Normal Form (3NF) [R31]. This design flaw was purposely left unresolved in
the collector database in order to maintain strict compatibility with the local sensor
database. All efforts were made to only add tables and fields, rather than remove
field in order to preserve a database schema compatibility that would allow the same
analysis tools (e.g. ACID) to be used for both databases.

7.2. Current Status
The prototype has been completed and has enjoyed over a month of extensive testing.
An architecture where multiple sensors send more than two alerts per second to a

64

Chapter 7. Conclusions

collector server has been validated.

7.3. Future Work

7.3.1. Collector Server Architecture
The prototype demonstrates that a multi-sensor, single collector server architecture is
possible. However, when considering scalability, performance, and security factors,
such a topology is not desirable for Internet-wide usage. Rather, multiple collector
servers, which have the capability to exchange data with each other, seems like a more
viable solution. It can be easily envisioned that large organization may want to run their
own collector server that must communicate with another collector.

There are at least two viable topologies in which to deploy collectors: hierarchy and
mesh (peer-to-peer). A hierarchical collector architecture would work very similar to
the current DNS infrastructure of central authority. It would designate a clear
relationship between the collectors and the flow path of reported alerts, but would allow
collectors to be single points of failure. A mesh topology would create a peer-to-peer
relationship between the collector servers decentralizing authority, but would require
defining the relationship between the collectors.

The semantics of communication for inter-collector communication would also need to
be defined when multiple collectors are introduced. Would there be "master" collectors
to whom other collectors report to as sensors? Would there be any granularity in what
information gets passed between collectors; a meta-alert definition language?
Furthermore, the issue of how to store alerts if collectors report to each other must be
addressed. Could the same alert be stored at two collectors?

Finally, the complexity of authentication and authorization will be greatly compounded
with a multi-collector model. At a minimum, multiple self-signed certificate authorities
will likely be required. Likewise, designing a richer authorization schema will have to
be investigated to enforce access control when sensors can submit more alerts to more
than one collector.

65

Chapter 7. Conclusions

7.3.2. Deploying prototype-aware sensors
The current prototype uses only Snort sensors to gather alerts. However, building a
Snort-centric infrastructure is inadequate. The Internet community uses a wide variety
of other IDSes whose alerts should also be aggregated. Furthermore, limiting alert
collection to merely IDSes is shortsighted since many other types of devices and
applications produce interesting security events which should also be analyzed (e.g.
firewalls, routers).

In expanding the base of sensors in the reporting infrastructure, it will not always be
possible (e.g. COTS) or desirable (e.g. for performance reasons) to modify the output
facilities of the sensors to log alerts remotely. Instead, a "translator architecture" may
need to be considered that will act as an intermediary between a sensor and collector,
converting the sensor generated propriety-encoded alerts into the abstracted SNML
encoding format.

Independent of which sensors are ultimately used, the type of organization and network
in which they are deployed will directly affect the "quality" of the data collected. In
order to assess the security of the Internet, a representative sample of the population
must be running the sensor software.

7.3.3. Detecting Events
Critical to detecting attacks is the underlying signature set. The prototype will be faced
with a number of challenges due to the size and heterogeneous environment in which it
must operate.

7.3.3.1. Common Alert Naming Scheme

As alerts are collected from a gambit of sensors, a unique naming convention must be
applied to known attacks. It must be ensured that when the same attack is detected by
different sensors that these alerts are recognized as merely multiple instances of the
same event. Otherwise, analysis will be imprecise and ineffective. There are several
ways to reference known vulnerabilities (e.g. CVE1, CERT2 advisory numbers,
Bugtraq3 IDs). The challenge lies in migrating these existing efforts into IDS signatures
and ensuring that these conventions remain timely.

66

Chapter 7. Conclusions

7.3.3.2. Defining and tailoring the signature-set

A precise list of which events should be identified and studied remains an open
question; analyzing at the granularity of port-scans on an Internet-scale is unfeasible.
Furthermore, precise signatures with no false positives will need to be investigated.

More ambitious than merely tweaking a static signature-set would be a dynamic set
distributed through some pre-defined infrastructure. This infrastructure would enable
the automatic updating of new signatures as new attacks arise or different analysis
criteria are identified.

7.3.3.3. Building an Abstract Signatures Language

As the number of sensor-types grows, so does the number of different signature
languages that must be supported. Re-implementing the same attack description in a
variety of proprietary languages is an undesirable situation in the large. Instead, a
common representation for attack signatures would alleviate this difficulty. The
responsibility would lie with sensor vendors to implement an attack description
standard.

7.3.4. Assessing the encoding format and protocol
flexibility

The prototype introduces a new encoding format and protocol: SNML and the feedback
protocol, respectively. Both must be analyzed to ensure that they are capable of
encapsulating all the necessary data and events in the most efficient manner. This
extensibility is crucial to allow SNML to encode new sensor data such as
cryptographically signed alerts (allowing for non-reputable data) which will also be
added in the future.

7.3.5. Storing Alerts
The prototype has shown that MySQL will probably not be the best implementation of
the central database. What remains unclear is what open-source or COTS product will

67

Chapter 7. Conclusions

be able to replace it.

Independent of the actual backing store implementation, the database scheme must also
be further analyzed for extensibility, performance, and scalability.

7.3.6. Analysis Possibilities
The issues surrounding the data collection have largely been examined in the prototype.
However, once all this data is stored, analysis techniques that can examine this amount
of data must be investigated. Since the data set will contain multi-administrative
domain alerts, new approaches may be required.

ACID ties directly into the future analysis work. A security architecture will have to be
added to identify users and delegate authorization. This addition allows system
participants to view their own data, as well as how their data fits into larger trends. This
strategy is one of many techniques possible to provide participants with timely
feedback.

Another participant feedback approach would draw on a publisher/subscriber paradigm
whereby users identify events that concern them via a "subscription". When the event
(or series of events) matches the prescribed subscription, the participant is notified. It is
only through adequate and useful feedback that the sensor community will grow.

7.4. Final Thoughts
Believing that current security event analysis techniques are myopic in focusing only
on single administrative domains, our initial interest was to study methods of
correlation and analysis to automatically detect attacks that impact multiple
administrative domains. At the onset, there was no technology available to enable the
collection of these prerequisite datasets in a reasonable way. Therefore, we changed our
thesis focus to concentrate on enabling such data collection efforts.

By providing mechanisms for the collection of data originating from multiple
administrative domains, this research begins to tackle the security dependency problem
using automated technology rather than human effort. Having laid the foundation with
the collection of structured data sets, analysis techniques can be employed to enable

68

Chapter 7. Conclusions

automatic detection of Internet-wide security events and identification of existing
trends. Furthermore, the fruits of this analysis may provide effective risk management
strategies by uncovering predictive indicators for looming threats.

Notes
1. http://cve.mitre.org

2. http://www.cert.org

3. http://www.bugtraq.org

69

Appendix A. Snort Database plug-in
documentation

A.1. README.database file included with snort
I. Summary

The database output plug-in enables snort to log to Postgresql, MySQL,
or any unixODBC database. This README contains information about how
to set up and configure your database for use with snort and how to
configure the database plugin.

There is a web site at "http://www.incident.org/snortdb" that will
always have the most up to date information and documentation about
this plug-in. Questions or comments about the database plugin can be
directed to Jed Pickel <jed@pickel.net> or to the snort-users mailing
list.

Database logging for snort would not be possible without the help,
contribution of code, comments, and debugging from many people. Listed
here are some of the folks that have been very helpful in making this
happen.

Credits:
Todd Schrub <tls@cert.org>

* author of initial code for MySQL
* helped design initial database architecture

Roman Danyliw <rdd@cert.org> <roman@danyliw.com>
* submitted structure for storing options
* all kinds of help with design and code

Yen-Ming Chen <yenming.chen@foundstone.com>
* helped with initial database design and testing
* author of the first analysis applications based on

snortdb

Geoff the UNIX guy <galitz@uclink.berkeley.edu>
* developer of applications based on snortdb

Bill Marquett <wlmarque@hewitt.com>
* snortdb power user
* bug squasher

Mike Anderson <mike@src.no>
* provided a lot of useful feedback on the database format

George Colt <colt@ojp.usdoj.gov>
* contributed fix for machines that need libm to link to

mysqlclient library.

70

Appendix A. Snort Database plug-in documentation

II. Database Setup

To get this plug-in working you must have a database set up and
configured properly. Take the the following steps to get things
working.

1) Install MySQL, Postgresql, or (unixODBC + some other RDBMS)
MySQL => http://www.mysql.org
Postgresql => http://www.postgesql.org
unixODBC => http://www.unixodbc.org

2) Follow directions from your database vendor to be sure your
RDBMS is properly configured and secured.

3) Follow directions from your vendor to create a database for
snort.

MySQL example
% echo "CREATE DATABASE snort;" | mysql -u root -p

4) Create a user that has privileges to INSERT and SELECT
on that database.
example

- First create a user - for this example we will use "jed"
- now grant the right privileges for that user
> grant INSERT,SELECT on snort.* to jed@localhost;

5) Build the structure of the database according to files supplied
with snort in the "contrib" directory as the user created in
step 4.

Do this while in the snort source directory.

For MySQL
% mysql < ./contrib/create_mysql

For Postgresql
% psql < ./contrib/create_postgresql

If you are using unixODBC, be sure to properly configure and
test that you can connect to your data source (DSN) with isql
before trying to run snort.

For RDBMS other than MySQL and Postgresql that are accessed
through ODBC you will need to create the database
structure yourself because datatypes vary for different
databases. You will need to have the same column names and
functionality for each column as in the mysql and
postgresql examples. The mysql file is the best example to
follow since it is optimized (given that mysql supports tiny
ints and unsigned ints). I intend to document this process
better in the future to make this process easier.

As you create database structure files for new RDBMS mail
them in so they can be included as part of the distribution.

III. Plugin Configuration

71

Appendix A. Snort Database plug-in documentation

You must add some information to the snort configuration file
to enable database logging. The configuration file distributed
with snort has some sample configuration lines.

The configuration line will be of the following format:

output database: [log | alert], [type of database], [parameter list]

Arguments:

[log | alert] - specify log or alert to connect the database
plugin to the log or alert facility. In most cases you will
likely want to use the log facility.

[type of database] - You must supply the type of database. The
possible values are mysql, postgresql, and unixodbc.

[parameter list] - The parameter list consists of key value
pairs. The proper format is a list of key=value pairs each
separated a space.

The only parameter that is absolutely necessary is "dbname".
All other parameters are optional but may be necessary
depending on how you have configured your RDBMS.

dbname - the name of the database you are connecting to

host - the host the RDBMS is on

port - the port number the RDBMS is listening on

user - connect to the database as this user

password - the password for given user

sensor_name - specify your own name for this snort
sensor. If you do not specify a name one will be
generated automatically.

encoding - Because the packet payload and option data is
binary, there is no one simple and portable way to
store it in a database. BLOBS are not used because they
are not portable across databases. So I leave the
encoding option to you. You can choose from the
following options. Each has its own advantages and
disadvantages:

hex: (default) Represent binary data as a hex string.

storage requirements - 2x the size of the binary

searchability....... - very good

human readability... - not readable unless you
are a true geek

requires post processing

base64: Represent binary data as a base64 string.

72

Appendix A. Snort Database plug-in documentation

storage requirements - ~1.3x the size of the binary

searchability....... - impossible without post
processing

human readability... - not readable
requires post processing

ascii: Represent binary data as an ascii string. This is
the only option where you will actually loose data.
Non ascii data is represented as a ".". If you choose
this option then data for ip and tcp options will
still be represented as "hex" because it does not
make any sense for that data to be ascii.

storage requirements - Slightly larger than the
binary because some characters
are escaped (&,<,>)

searchability....... - very good for searching for
a text string

impossible if you want to
search for binary

human readability... - very good

detail - How much detailed data do you want to store? The options
are:

full: (default) log all details of a packet that
caused an alert (including ip/tcp options and
the payload)

fast: log only a minimum amount of data. You severely
limit the potential of some analysis
applications if you choose this option, but
this is still the best choice for some
applications. The following fields are logged
- (timestamp, signature, source ip,
destination ip, source port, destination
port, tcp flags, and protocol)

The configuration I am currently using is MySQL with the database
name of "snort". The user "jed@localhost" has INSERT and SELECT
privileges on the "snort" database and requires a password of
"xyz". The following line enables snort to log to this database.

output database: log, mysql, dbname=snort user=jed host=localhost password=xyz

IV. Changelog:

2000-10-05: Created README.database and removed documentation from
spo_database.c

2000-10-03: Added sensor_name configuration option
2000-09-29: Added configuration option enabling user to connect

the plugin to the alert or log facility
Changed name from spo_log_database to spo_database
Removed all old references to the log facility
Fixed a logic error that prevented messages from

73

Appendix A. Snort Database plug-in documentation

the portscan preprocessor to be logged.
2000-08-24: Fixed the full logging of tcp fields

Added encoding and detail to sensor table
Added escaping for the ascii character ’
Added hex binary logging support
Added detail and encoding to sensor table
Slightly changed data table to make more sense
Added encoding option so you can select hex, base64,

or ascii for logging binary data
Added the "detail" option so you can choose between

full and fast logging.
2000-08-23: A lot of code cleanup.

Added linked list to store queries before they are
executed.

Added all tcp, udp, and icmp fields
Added support for tcp and ip options
Added support for logging the packet payload

2000-08-14: Added usage, very verbose error messages and other
small fixes. No real functional changes. This update
is focused on making the plugin easier to install
and configure.

2000-06-06: Multiple instantiations is now working
2000-06-06: Added restart and cleanexit functions
2000-06-02: Bugfixes, better error reporting
2000-05-09: Bugfixes, documentation fixes, and added some

better error reporting
2000-04-13: Bugfixes
2000-04-03: Updated database structure
2000-03-28: Added unixODBC support

Added MySQL support
Changed database structure

2000-03-08: Added new table "sensor" and a new field to event
table to represent the sensor

2000-03-08: Added locking on inserts to eliminate concurrency
problem

2000-03-08: Changed "type" and "code" in icmphdr to int2 instead
of char

2000-03-01: Added extra argument to RegisterOutputPlugin
2000-02-28: First release

A.2. Function documentation
SetupDatabase()

Purpose:Registers the output plugin keyword and initialization function into the output
plugin list. This is the function that gets called from InitOutputPlugins() in plugbase.c.

DatabaseInit(u_char *)

74

Appendix A. Snort Database plug-in documentation

Purpose:Calls the argument parsing function, performs final setup on data structs and
links the preproc function into the function list.

ParseDatabaseArgs(char *)

Purpose:Processes the preprocessor arguements from the rules file and initialize the
preprocessor’s data struct.

void FreeQueryNode(SQLQuery * node)

Purpose:Free the datastructure containing a linked list of buffered queries.

SQLQuery * NewQueryNode(SQLQuery * parent)

Purpose:Append another query to the data structure containing a linked list of buffered
queries.

Database(Packet *, char * msg, void *arg)

Purpose:The is the main callback function that handles inserting alerts into the
database when an event is detected by Snort.

Insert(char * query, DatabaseData * data)

Purpose:Database independent abstraction function for SQL inserts

Select(char * query, DatabaeData * data)

Purpose:Database independent function for SQL selects that return a non zero int.

Connect(DatabaseData * data)

Purpose:Database independent function to initiate a database connection

Disconnect(DatabaseData * data)

Purpose:Database independent function to close a connection

void DatabasePrintUsage()

Purpose:Used to print usage of the plugin when incorrect arguments are supplied.

75

Appendix A. Snort Database plug-in documentation

void SpoDatabaseCleanExitFunction(int signal, void *arg)

Purpose:Disconnect from database and free memory when snort exits.

void SpoDatabaseRestartFunction(int signal, void *arg)

Purpose:Disconnect from database and free memory when snort restarts.

76

Appendix B. Database Schema
There are two database schemas implemented in the prototype architecture: an alert
storage schema (see Section B.1) and the certificate authority schema (see Section B.2).

B.1. Snort and Collector Schema

Figure B-1. Snort and Collector database ER diagram

Table B-1. Snort and Collector table schema

Table Component Description

sensor Snort Sensor name

event Snort Meta-data about the detected alert

data Snort Contents of packet payload

iphdr Snort IP protocol fields

77

Appendix B. Database Schema

Table Component Description

tcphdr Snort TCP protocol fields

udphdr Snort UDP protocol fields

icmphdr Snort ICMP protocol fields

opt Snort IP and TCP options

detail Snort (lookup table) Level of detail with which a
sensor is logging

protocols SnortDB extra (lookup table) Layer-4 (IP encoded) protocol
list

services SnortDB extra (lookup table) TCP and UDP service list

flags SnortDB extra (lookup table) TCP flag list

acid_ag ACID Meta-data for alert groups

acid_ag_list ACID Alerts in each alert group

access_log mod_air Collector server to sensor transaction log

return_msg_list

mod_air "Feedback" protocol return codes

B.2. Certificate Authority Schema

Figure B-2. Certificate Authority database ER diagram

78

Appendix B. Database Schema

Table B-2. CA table schema

Table Component Description

subject CA Meta-data about each X.509 certificate

keyinfo CA Public Key of certificate

certificate CA PEM encoded X.509 certificate

subject_status_list CA (lookup table) Status code list of a certificate

org CA Registration information from each
participating organization

org_confirm CA Temporary table to store un-confirmed
accounts

79

Appendix C. Snort XML plug-in
documentation

C.1. README.xml file included with snort
Snort XML Output Plug-in

I. Summary

The XML plug-in enables snort to log in SNML - simple network markup
language aka (snort markup language) to a file or over a network. The
DTD is available in the contrib directory of the snort distribution
and at: http://www.cert.org/DTD/snml-1.0.dtd. You can use this plug-in
with on one or more snort sensors to log to a central database and
create highly configurable intrusion detection infrastructures within
your network. The plugin will also enable you to automatically report
alerts to the CERT Coordination Center, your response team, or your
managed IDS provider.

This plugin was developed by Jed Pickel and Roman Danyliw at the CERT
Coordination Center as part of the AIRCERT project.

Be aware that the SNML DTD is in its early phases of development and
is likely to be modified as it undergoes public scrutiny.

See http://www.cert.org/kb/snortxml for the most up to date
information and documentation about this plugin.

II. Configuration

You must add some information to the snort configuration file
to enable database logging. The configuration file distributed
with snort has some sample configuration lines.

The configuration line will be of the following format:

output xml: [log | alert], [parameter list]

Arguments:

[log | alert] - specify log or alert to connect the xml
plugin to the log or alert facility.

[parameter list] - The parameter list consists of key value
pairs. The proper format is a list of key=value pairs each
separated a space.

file - when this is the only parameter it will log to
a file on the local machine. Otherwise, if
http or https is employed (see protocol), this is
the script which is to be executed on the remote

80

Appendix C. Snort XML plug-in documentation

host.

protocol - The possible values for this field are

http - send a POST over HTTP to a webserver
(required: a [file] parameter)

https - just like http but ssl encrypted and
mutually authenticated.
(required: a [file], [cert], [key]

parameter)

tcp - A simple tcp connection. You need to
use some sort of listener
(required: a [port] parameter)

iap - An implementation of the Intrusion Alert
Protocol (This does not work yet)

host - remote host where the logs are to be sent

port - The port number to connect to
(default ports are)
http 80
https 443
tcp 9000
iap 9000

cert - the client X.509 certificate to use with https
(PEM formatted)

key - the client private key to use with https
(PEM formatted)

ca - the CA certificate used to validate the https
server’s certificate (PEM formatted)

server - the file containing a list of valid servers with
which to communicate. It is used so that Snort can
authenticate the peer server. Each server is
identified by a string formed by concatenating
the subject of the server’s X.509 certificate.
This string can be created by:

% openssl x509 -subject -in <server certificate>

Typically only someone deploying the HTTPS will have
to perform this task (since they have access to the
server certificate). This entitity should publish
this subject string for configuration inside each
snort sensor.

sanitize - The argument is a a network/netmask combination for
an IP range you wish to be sanitized. Any IP address
within the range you specify will be represented as
"xxx.xxx.xxx.xxx". Also, for sanitized alerts, no
packet payload will be logged. You can use the
sanitize parameter multiple times to represent
multiple IP ranges.

81

Appendix C. Snort XML plug-in documentation

encoding - Packet payload and option data is binary and
there is not one standard way to represent it as
ASCII text. You can choose the binary encoding
option that is best suited for your environment.
Each has its own advantages and disadvantages:

hex: (default) Represent binary data as a hex string.

storage requirements - 2x the size of the binary

searchability....... - very good

human readability... - not readable unless you
are a true geek

requires post processing

base64: Represent binary data as a base64 string.

storage requirements - ~1.3x the size of the binary

searchability....... - impossible without post
processing

human readability... - not readable
requires post processing

ascii: Represent binary data as an ascii string. This is
the only option where you will actually loose
data. Non ascii data is represented as a ".". If
you choose this option then data for ip and tcp
options will still be represented as "hex" because
it does not make any sense for that data to be
ascii.

storage requirements - Slightly larger than the
binary because some characters
are escaped (&,<,>)

searchability....... - very good for searching for
a text string

impossible if you want to
search for binary

human readability... - very good

detail - How much detailed data do you want to store? The options
are:

full: (default) log all details of a packet that
caused an alert (including ip/tcp options and
the payload)

fast: log only a minimum amount of data. You severely
limit the potential of some analysis
applications if you choose this option, but
this is still the best choice for some
applications. The following fields are logged
- (timestamp, signature, source ip,

82

Appendix C. Snort XML plug-in documentation

destination ip, source port, destination
port, tcp flags, and protocol)

Examples:

output xml: log, file=output
output xml: log, protocol=https host=air.cert.org file=alert.snort

cert=mycert.crt key=mykey.pem ca=ca.crt server=srv_list.lst

PROTOCOL tcp http https iap
===
file		no	required	required	no
========		==========	==========	==========	==========
host		required	required	required	required
========		==========	==========	==========	==========
port		required	optional	optional	optional
========		==========	==========	==========	==========
cert		no	no	required	optional
========		==========	==========	==========	==========
key		no	no	required	optional
========		==========	==========	==========	==========
ca		no	no	required	optional
========		==========	==========	==========	==========
server		no	no	required	no
========		==========	==========	==========	==========
sanitize		optional	optional	optional	optional
===

III. Change Log

08/25/2000 : Added "encoding" and "detail" configuration options
08/14/2000 : Initial Release

IV. TODO

* still need to get IAP working
* add expiration dates/CRL into server certificate validation
* support multiple HTTPS servers
* real queue management on alerts: batching, using congestion

feedback

C.2. Function documentation

C.2.1. Callback functions

void LogXml(Packet *, char * msg, void * data)

83

Appendix C. Snort XML plug-in documentation

Purpose:This function is called when an event is detected by the Snort detection
engine that is configured to log to XML.

XmlInit(u_char *)

Purpose:Called when Snort first initializes. This routine contains all of the
initialization code for the XML plugin.

XmlExit(int signal, void *arg)

Purpose:This routine is called when snort exits. It cleans up by freeing memory and
flushing any buffered data.

XmlRestart(int signal, void *arg)

Purpose:Similar to XmlExit but this is called when snort receives a HUP signal.

C.2.2. Initialization Routines

SetupXml()

Purpose:Register the output plugin with snort

ParseXmlArgs(char *)

Purpose:Process arguments supplied by user in configuration file.

C.2.3. XML Generating Functions

Tag * newtag(char * name)

Purpose:create a new XML tag

Tag * addtag(Tag *parent, Tag *child)

Purpose:connect a child tag to a parent

Tag * addopt(Tag * tag, char * name, char * value)

84

Appendix C. Snort XML plug-in documentation

Purpose:add options and values to an XML tag

Tag * addvalue(Tag * tag, char * val)

Purpose:inserts a value for an XML tag

Tag *snml(XmlData *d, Packet *p, char *msg)

Purpose:simple network markup language encoder

char *tag2string(char *buf, int size, Tag * ptr, int depth)

Purpose:convert datastructures to XML

C.2.4. Networking Code

send_data(XmlData * data)

Purpose:Write data to a file or over the network

BrokenNetConnection(int signal)

Purpose:Print errors on a broken connection

send_data_network(XmlData *d, char *output)

Purpose:Send XML-formatted output onto the wire.

C.2.5. SSL Functions

init_snort_ssl_ctx(XmlData *d)

Purpose:Initialize an TLSv1 context

EVP_PKEY * load_key(char *key_fname)

Purpose:Loads a PEM encoded RSA Private key from disk into memory

X509 * load_crt(char *ca_fname)

85

Appendix C. Snort XML plug-in documentation

Purpose:Loads a PEM encoded .CRT file from disk into memory

VerifyServerCertificate(X509 *current, char *valid_server,
X509 *issuer)

Purpose:Validates a certificate based on an issuer certificate

SSLServerResponse * ProcessSSLServerResponse(char
*rbuf)

Purpose:Process response from server

C.2.6. Other

snort_return_msg_index(int msg_code)

Purpose:check return codes after sending alert

int srcSanitized(XmlData *d, Packet *p)

Purpose:check to see if the user wants the source IP address to be sanitized

int dstSanitized(XmlData *d, Packet *p)

Purpose:check to see if the user wants the destination IP address to be sanitized

void flush_data(XmlData *d)

Purpose:flush an alert queue

void freetag(Tag * root)

Purpose:free memory associated with internal XML datastructures

86

Appendix D. SNML DTD
<!ENTITY version "1.0">

<!ELEMENT event (sensor, signature, timestamp, packet)>

<!- The sensor field contains information that can be used to
uniquely identify the source of where this event was
detected. It always contains a "hostname" and optionally a
filter. And you have the option of including a file (the
file being the source of data), or an ip address and
network interface. ->

<!ELEMENT sensor (file|(ipaddr, interface?)), hostname, filter?>

<!- The signature is just free-
form text. In snort it is the string

contained in the "msg" variable ->
<!ELEMENT signature #PCDATA>

<!- The timestamp must conform to ISO-8601 standard.
e.g. ISO-8601: 1999-08-04 00:01:23-05 ->

<!ELEMENT timestamp #PCDATA>

<!- A packet can be logged without being decoded if you use
"raw" mode. The only time you would re-

ally want to do this is
if you were receiving a packet containing proto-

cols you don’t
have the ability to decode. ->

<!ELEMENT packet (raw|iphdr)>

<!- IP address only. Anything else is rejected. This means no
domain names. The version attribute is the version of IP
address (Should be 4 or 6).->

<!ELEMENT ipaddr #PCDATA>
<!ATTLIST ipaddr

version CDATA #REQUIRED
>

<!- This field contains an ordinary hostname ->

87

Appendix D. SNML DTD

<!ELEMENT hostname #PCDATA>

<!- This contains a file name with a full path ->
<!ELEMENT file #PCDATA>

<!- This field contains an ordinary hostname ->
<!ELEMENT hostname #PCDATA>

<!- Contains a string representing a network interface
ie. eth0, ppp0, hme0, etc ->

<!ELEMENT interface #PCDATA>

<!-
A string representing a tcpdump filter that is normally passed

in on the command line.
ie. "not net 10.1.1.0/24" ->

<!ELEMENT filter #PCDATA>

<!- raw contains a base64 representation of a binary packet ->
<!ELEMENT raw #PCDATA>

<!- IPv4 header
saddr = source IP address -

IP address IP (192.168.1.2)
daddr = destination IP address -

IP address IP (192.168.1.2)
ver = version of ip - 1 byte INT (0 - 15)
hlen = header length in 32 bit words

- 1 byte INT (0 - 15)
tos = type of service - 1 byte INT (0 - 255)
len = total length of the packet

- 2 byte INT (0 - 65535)
id = identification - 2 byte INT (0 - 65535)
flags = fragment flags - 1 byte INT (0 - 7)
off = fragment offset - 2 byte INT (0 - 65535)
ttl = time to live - 1 byte INT (0 - 255)
proto = protocol - 1 byte INT (0 - 255)
csum = checksum - 2 byte INT (0 - 65535)
->

<!ELEMENT iphdr (tcphdr|udphdr|icmphdr), option?)>
<!ATTLIST iphdr

88

Appendix D. SNML DTD

saddr CDATA #REQUIRED
daddr CDATA #REQUIRED
ver CDATA #REQUIRED
hlen CDATA #IMPLIED
tos CDATA #IMPLIED
len CDATA #IMPLIED
id CDATA #IMPLIED
flags CDATA #IMPLIED
ttl CDATA #IMPLIED
off CDATA #IMPLIED
ttl CDATA #IMPLIED
proto CDATA #REQUIRED
csum CDATA #IMPLIED

>

<!- TCP header information
sport = source port - 2 byte INT (0 - 65535)
dport = destination port - 2 byte INT (0 - 65535)
seq = sequence number - 4 byte INT (0 -

4294967295)
ack = acknowledgment number - 4 byte INT (0 -

4294967295)
off = data offset - 1 byte INT (0 - 15)
res = reserved field - 1 byte INT (0 - 63)
flags = represents TCP flags - 1 byte INT (0 - 255)
win = window - 2 byte INT (0 - 65535)
csum = checksum - 2 byte INT (0 - 65535)
urp = urgent pointer - 2 byte INT (0 - 65535)
->

<!ELEMENT tcphdr data, option?>
<!ATTLIST tcphdr

sport CDATA #REQUIRED
dport CDATA #REQUIRED
seq CDATA #IMPLIED
ack CDATA #IMPLIED
off CDATA #IMPLIED
res CDATA #IMPLIED
flags CDATA #REQUIRED
win CDATA #IMPLIED
csum CDATA #IMPLIED
urp CDATA #IMPLIED

89

Appendix D. SNML DTD

>

<!- UDP header information
sport = source port - 2 byte INT (0 - 65535)
dport = destination port - 2 byte INT (0 - 65535)
len = length field of UDP header

- 2 byte INT (0 - 65535)
csum = checksum - 2 byte INT (0 - 65535)
->

<!ELEMENT udphdr data>
<!ATTLIST udphdr

sport CDATA #REQUIRED
dport CDATA #REQUIRED
len CDATA #IMPLIED
csum CDATA #IMPLIED

>

<!- ICMP header
type = icmp type - 1 byte INT (0 - 255)
code = icmp code - 1 byte INT (0 - 255)
csum = checksum - 2 byte INT (0 - 65535)
id = identifier - 2 byte INT (0 - 65535)
seq = sequence number - 2 byte INT (0 - 65535)
->

<!ELEMENT icmphdr data>
<!ATTLIST icmphdr

type CDATA #REQUIRED
code CDATA #REQUIRED
csum CDATA #IMPLIED
id CDATA #IMPLIED
seq CDATA #IMPLIED

>

<!- This field contains a representation of data.
The format attribute must be either base64 or ascii
depending on how the data is logged. ascii data is
generally the data with portions that can not be
represented in standard characters substituted with a
period.

->
<!ELEMENT data #PCDATA>

90

Appendix D. SNML DTD

<!ATTLIST data
format (base64|ascii) #REQUIRED

91

Appendix E. Module AIR (mod_air)
documentation

E.1. Configuration

1. Uncompress the mod_air distribution.

2. ./configure

3. ./make

4. ./make install

5. The existing Snort DB must have its schema updated in order to support the
additional functionality of the collector (mod_air).

% cat ./database/create_mod_snort_support | mysql < Snort DB name >

6. Configure the following variable in the Apache configuration file (httpd.conf):

LoadModule air_module libexec/mod_air.so

Sets mod_air to listen for any re-
quests for files with the .air
extension
AddHandler air .air

Log file name
AirTraceFile /tmp/alert

Critical error log
AirErrorFile /tmp/mod_snort_error

Sets the mod_air debug level. Values range
#between 0 .. 7 where
7 : debug level
... :
0 : only server-critical
AirLogLevel 7

92

Appendix E. Module AIR (mod_air) documentation

Configures the alert quota of the sensors.
’AirThrottleInterval’ sets the time window in which
to assign the quote, while ’AirThrottleThreshold’
sets the number of alerts which can be received
in that unit of time.
AirThrottleInterval 1
AirThrottleThreshold 10

Identifies the Central database name and
connection information
- AirDBName : alert database name
- AirDBHost : host on which the database resides
- AirDBPort : port over which to connect to the database
- AirDBUser : username with which to login
- AirDBPassword : username’s password
AirDBName snort_log
AirDBHost localhost
AirDBPort 3306
AirDBUser root
AirDBPassword mypassword

Identifies the Certificate Authority
(CA) database name and connection information
- AirCADBName : CA database name
- AirCAHost : host on which the database resides
- AirCAPort : port over which to connect to the database
- AirCAUser : username with which to login
- AirCAPassword : username’s password
AirCADBName ca_db
AirCAHost localhost
AirCAPort 3306
AirCAUser root
AirCAPassword mypassword

7. For each sensor, generate an RSA key and certificate signing request (CSR), and
submit it to thecertgen utility. It will return a a PEM encoded X.509 certificate
with no password using the same issuer as the HTTPS server.

% openssl genrsa -out sensor.key 1024

% openssl req -new -key sensor.key -out sensor.csr

% ./certgen < sensor.csr > sensor.crt

93

Appendix E. Module AIR (mod_air) documentation

E.2. Function documentation

Table E-1. mod_air source tree

File Description

README, FAQ Documentation included in distribution

Makefile.in,

configure.in

The scripts necessary to build mod_air

mod_air.h Global variable, data structure, and function
declaration

mod_air.c Apache module API callback routines

mod_air_ca.c Certificate Authority (CA) and authentication API

mod_air_ipc.c Inter-Process Communication (IPC) - semaphore and
shared memory segments

mod_air_throttle.c Throttle-table management

mod_air_log.c Logging facilities

mod_air_xml.h XML-specific variable and data structure definitions

mod_air_xml_sax.c libxml callback functions

mod_air_xml_db.c XML-to-DB INSERT routines

mod_air_xml_util.c XML parsing helper-utilities

create_mod_snort_support Modifies and creates the database tables to support
mod_air

certgen.c Accepts a CSR and returns a certificate

sslpost.c Utility which simulates sensor behavior by taking a
XML-alert and sending it to a collector

E.2.1. Apache Callbacks

void air_init(server_rec *s, pool *p)

Purpose:(Apache callback) module initializer, called once per server record in the

94

Appendix E. Module AIR (mod_air) documentation

Apache configuration

Performs the basic initializations for the global data structures that are shared among
Apache daemons:

• validates the parameters from httpd.conf

• inits the semaphore for DB access

• Snort DB and CA DB connection handles setup

• log file handles are opened

• throttle table shared memory created

The function is called once per every server_rec before the child pool is spawned. For
example, if you have an HTTP and HTTPS server are running from the same httpd
process, then at a minimum there will be two server records (i.e. two calls to this
function). This routine is run from the parent process of all the httpd processes which
are fork()ed.

Argument:

• s => server record

• p => memory pool

void * create_dir_mconfig(pool *p, char *dir)

Purpose:(Apache callback) A per-directory configuration structure initializer. This
routine also inits the global shared variables

Argument:

• p => module memory pool

• dir => directory for which callback was issued

int air_handler(request_rec *r)

Purpose:(Apache callback) content handler of each SNML alert.

95

Appendix E. Module AIR (mod_air) documentation

This routine is the entry point for all the processing done by the module. Initially all
request (across all the processes) are blocked on a common semaphore waiting to run
the critical section which will process and commit the submitted alert (via POST). To
process an alert the following steps are followed. Note: it is possible to abort at any
stage and return an error.

• return MIME type

• block on access to mutex (all httpd blocking)

• authentication: check client certificate

• alert processing: check congestion/throttle

• alert processing: SAX parsing

• alert processing: commit alert(s) to DB

• return status to client

• release mutex

Argument:r => request record from which to read the data

int air_fixup(request_rec *r)

Purpose:(Apache callback) fix-up. Last chance to add information to the environment
or to modify the request record. Check to make sure this is not a sub-request.

Argument:r => request record

Returns:DECLINED => status on whether this module should handle the request

void air_child_init(server_rec *s, pool *p)

Purpose:(Apache callback) Child initializer.

Performs the basic initializations for the httpd child:

• attach to the shared memory throttle table

• increment the number of existing children

When this routine is called for the first time (for the first child), the throttle table values
are initialized.

96

Appendix E. Module AIR (mod_air) documentation

The function is called when an instance of the httpd daemon is spawned (forked()) from
the parent http process. There will be many instances of httpd and therefore calls to this
function.

Argument:

• s => server record of associated child

• p => child’s memory pool

void air_child_exit(server_rec *s, pool *p)

Purpose:(Apache callback) Child exit. Performs the deallocations required before an
instance of the child exits.

• decrement the number of outstanding children

• detach from any shared memory

• close our handle to any log files

Since Apache does not have a callback for a module exit (despite the fact that there is a
module init), we need to always check if this particular child is the last one to exit. It is
the last child’s responsibility to deallocate all the global data structures (database
semaphores/mutexes, throttle table).

The function is called for every instance of the httpd daemon when it receives a signal
to terminate from the parent httpd process. It should be called for every child which
child_init().

Argument:

• s => server record of associated child

• p => child’s memory pool

E.2.2. Apache Callback helpers

int read_content (request_rec *r, char *data, long length)

97

Appendix E. Module AIR (mod_air) documentation

Purpose:reads the POST data from stdin handling all the details of Apache data
chunking

This is the crucial code which reads the POST data from stdin. It was unceremonially
’liberated’ and modified from mod_cgi.c in the Apache core.

Argument:

• r => request record for which to read the data

• data => pointer to store POST data

• length => expected length of POST data

Returns:# of bytes read

E.2.3. Certificate Authority API

int auth_snort_client(X509 *client_cert,
unsigned *long subject_id)

Purpose:Accepts an X.509 certificate (typically passed by the client), and validates its
status against the CA DB.

Argument:

• client_cert => X.509 certificate to validate

• subject_id => sets this to be the id # of the certificate

Returns:status of the certificate

• 1 => authenticated

• 0 => recognized, but revoked certificate

• -1 => unknown unknown certificate

98

Appendix E. Module AIR (mod_air) documentation

E.2.4. Inter-Process Communication

void semaphore_init (int *semid, key_t semkey)

Purpose:creates and initializes a System V kernel semaphore

Argument:

• semid => ID # of the newly created semaphore

• semkey => unique key number with which to create a semaphore

void semaphore_wait(int semid)

Purpose:blocks waiting on the semaphore to be available (P)

Argument:semid => ID # of of semaphore to block on

void semaphore signal(int semid)

Purpose:signals semaphore to be available (V)

Argument:semid => ID # of of semaphore to signal

void semaphore_destroys(int semid)

Purpose:destroys a System V semaphore

Argument:semid => ID # of of semaphore to destroy

E.2.5. Logging Facilities

unsigned long snort_log_access(time_t when, request_rec *r,
long cert_id, long throttle,
long auth, long commit,
long num_alerts, long sid,
long cid)

Purpose:Log the arrival/processing of an alert. Writes a record into the access log
about the current connection. A record is made for every connection attempt.

99

Appendix E. Module AIR (mod_air) documentation

Argument:

• when => time when alert(s) arrived

• r => request record of the HTTP connection over which the alert arrived

• cert_id => ID of the X.509 certificate of the client

• throttle => throttle status code

• auth => authentication status code

• commit => commit status code

• num_alerts => # of alerts in the POST

• sid => sensor ID on which the alert was detected

• cid => last event ID of the alert

Returns:ID of the newly inserted row in the access log database, or -1 if there is an
error

void snort_log_malformed(time_t when,
unsigned long access_log_id,
long cert_id, unsigned long sid,
char ip_address, char xml_input)

Purpose:Logs any malformed XML that cannot be parsed. Used to detect any possible
attacks exploitable through crafting the XML input (e.g. buffer overflow)

Argument:

• when => when alert(s) arrived

• access_log_id => ID # of entry in the access_log

• cert_id => ID of the X.509 certificate of the client

• sid => sensor ID on which the alert was detected

• ip_address => IP address of the client which sent the alert

• xml_input => raw XML of the alert

char * snort_return_msg_string(int msg_code)

100

Appendix E. Module AIR (mod_air) documentation

Purpose:return code translation; code # => text description

Argument:msg_code => numeric code of return message

Returns:text equivalent of the return message code

void snort_response_string_print(request_rec *r, int_msg_code)

Purpose:returns a message to the client

Argument:

• r => request record of the connection

• msg_code => numeric code of message

void air_log_msg(int severity, char format, ...)

Purpose:logs a message into the trace file

Argument:

• severity => indicates the logging level of the event [0,7]

• format => format string of message

• ... => variable-length parameter list of message

void FatalError(const char format, ...)

Purpose:Write a fatal error message to stderr and dies

Argument:

• format => format string of message

• ... => variable-length parameter list of message

void ErrorMessage(const char format, ...)

Purpose:Write a non-fatal error message to stderr

Argument:

101

Appendix E. Module AIR (mod_air) documentation

• format => format string of message

• ... => variable-length parameter list of message

E.2.6. Connection Throttling

int check_throttle(unsigned long sid)

Purpose:returns throttle information on a particular certificate (user)

Argument:sid => certificate ID for which to return throttle info

Returns:throttle status

• THROTTLE_OK : "no" congestion

• THROTTLE_CONGESTION: congestion

• THROTTLE_QUENCH: exceeded allowable # of alert per time

• THROTTLE_DENIED: throttle unable to be determined, denied

void InitThrottleTable()

Purpose:(Throttle Table) Initializes

Argument:

• client_cert => X.509 certificate to validate

• subject_id => sets this to be the id # of the certificate

Returns:status of the certificate

• 1 : authenticated

• 0 : recognized, but revoked certificate

• -1 : unknown unknown certificate

void DeallocateThrottleTable()

102

Appendix E. Module AIR (mod_air) documentation

Purpose:(Throttle Table) Deallocates throttle table

int RemoveOldAlertInfo(SensorEntry *alert_history, time_t cur-
rent_time)

Purpose:(Arrival Queue) Evaluates which packets are still in the relevant time window
defined by the ’current_time’ and ’alert_throttle_duration’ and removes all those alerts
that are older.

Argument:

• alert_history => entry in ThrottleTable to consider

• current_time => alert arrival time

Returns:number of alerts which were dropped because they were no longer in the
current time window

void InsertNewAlertInfo(SensorEntry *alert_history,
time_t current_time)

Purpose:(Arrival Queue) Adds a newly arrived alert time into the associated sensor’s
alert arrival queue.

Argument:

• alert_history => entry in ThrottleTable to consider

• current_time => alert arrival time

void CreateAlertEntry(SensorEntry *alert_history)

Purpose:(Arrival Queue) Deals with the situation where there is an overflow in the
arrival queue. This routine ’makes’ space by dropping the oldest entry (i.e. at front) and
makes it available for enqueuing

Argument:alert_history => entry in ThrottleTable to consider

time_t AlertHistoryHead(SensorEntry *alert_history)

103

Appendix E. Module AIR (mod_air) documentation

Purpose:(Arrival Queue) Returns the front (next to be dequeued) arrival time of a
particular sensor in the ThrottleTable

Argument:alert_history => entry in ThrottleTable to consider

Returns:head of the arrival queue of a particular ThrottleTable entry

time_t AlertHistoryDequeue(SensorEntry *alert_history)

Purpose:(Arrival Queue) Dequeues a new alert arrival time from the front of a
particular arrival queue of a sensor in the ThrottleTable

Argument:alert_history => entry in ThrottleTable to consider

Returns:newly dequeued arrival time from the queue

void AlertHistoryEnqueue(SensorEntry *alert_history,
time_t value)

Purpose:(Arrival Queue) Enqueues a new alert arrival time to the end of a particular
arrival queue of a sensor in the ThrottleTable

Argument:

• alert_history => entry in ThrottleTable to consider

• value => alert arrival time to add into the queue

int AlertHistoryFull(SensorEntry *alert_history)

Purpose:(Arrival Queue) Checks and returns whether the queue of alert arrival times
(alert history) for a particular sensor entry in the ThrottleTable is full.

Argument:alert_history => entry in ThrottleTable to consider

Returns:boolean of whether the queue is full

void PrintAlertHistory(SensorEntry *alert_history)

Purpose:(Arrival Queue) Prints the queue of alert arrival times (alert history) for a
particular sensor entry in the ThrottleTable

Argument:alert_history => entry in ThrottleTable to consider

unsigned long htbl_hash(unsigned long sid)

104

Appendix E. Module AIR (mod_air) documentation

Purpose:(Hash Table) Hashes a key into a hash value

Argument:sid => certificate ID (key into the ThrottleTable)

Returns:hashed value of key

unsigned long htbl_rehash(unsigned long sid)

Purpose:(Hash Table) Re-Hashes a key into a hash value. Typically invoked after a
collision.

Argument:sid => certificate ID (key into the ThrottleTable)

Returns:hashed value of key

SensorEntry * htbl_get(unsigned long sid)

Purpose:(Hash Table) Retrieves the corresponding entry from the ThrottleHash table
based on a certificate ID.

Collision resolution is addressed with nonlinear re-hashing; that is, re-hashing a
another hash to find an alternate location in the table. This algorithm is undesirable but
is implemented since other, better technique (external chaining) will require using
dynamically allocated memory which cannot be used because of shared memory
limitation/complexity

Argument:sid => certificate ID (key into the ThrottleTable)

Returns:pointer to the corresponding sensor’s entry in the table OR NULL if too many
collisions occurred

unsigned long htbl_hash_function(char *raw_key)

Purpose:(Hash Table) This function takes an arbitrary length string and hashes it
returning a long. The underlying algorithm is taken from the hash code used in the
UNIX ELF format for object files.

Argument:raw_key => value to hash

Returns:hashed equivalent of ’raw_key’

105

Appendix E. Module AIR (mod_air) documentation

E.2.7. XML Processing

int xmldb_main(unsigned long id, char *data, int size,
int *success_commits, int *throttle_state,
long *sid, long *cid)

Purpose:Entry point into the SAX parsing of an alert:

• clean the XML of illegal characters

• validate that have SNML XML header

• invoke libxml2 SAX parser

• < callbacks get invoked >

• return status of XML parse

Argument:

• id => X.509 serial number id of the sensor sending the alert

• data => XML alert stream

• size => length of XML alert stream

• success_commits => returns back number of alerts written successfully from the XML
stream

• throttle_state => returns back throttle information for connection

Returns:a status code on the processing the XML stream

E.2.8. XML SAX Callbacks

void startDocument(void *ctx)

Purpose:(SAX callback) Called at the beginning of a XML document

Argument:ctx => current parser context

endDocument(void ctx)

106

Appendix E. Module AIR (mod_air) documentation

Purpose:(SAX callback) Called at the end of a XML document

Argument:ctx => current parser context

void startElement(void *ctx, const xmlChar *name,
const xmlChar **atts)

Purpose:(SAX callback) Called when an element is encountered.

Argument:

• ctx => current parser context

• name => name of triggering element

• atts => array (1-dim) holding the element attributes. The structure of the array is as
follows:

• atts[i] : name of field, e.g. ’len’

• atts[i+1] : value of field, e.g. ’32’

void endElement(void *ctx, const xmlChar *name)

Purpose:(SAX callback) Called when an end element is encountered.

Argument:

• ctx => current parser context

• name => name of triggering element

void characters(void *ctx, const xmlChar *ch, int len)

Purpose:(SAX callback) Called when characters between entities are encountered.

Argument:

• ctx => current parser context

• ch => characters

• len => length of characters

107

Appendix E. Module AIR (mod_air) documentation

E.2.9. XML-to-DB Abstraction

void WriteAlert(alert_instance *alert)

Purpose:Execute SQL statements generated by processing of alerts into a MySQL
database.

• Validate that have correct number of statements

• write ’event’ table

• write ’iphdr’ tbl, ’option’ tbl (ip options)

• write layer-4 tbl (tcphdr, udphdr, icmphdr), ’option’ tbl (tcp options)

• write ’data’ tbl (payload)

Argument:alert_instance => current context of parser

void InitDatabase(alert_instance *ctx)

Purpose:Determines the correct sensor ID of the current alert (via the sensor table in
the DB). If this is a new sensor, it is added to the database.

This routine is called at the beginning of every alert

Argument:ctx => current context of parser

int GetNextCID(alert_instance *ctx)

Purpose:Given a sensor ID, returns the next available event ID

Argument:ctx => current context of parser

Returns:next available event ID (cid) for a given sensor (sid)

void LogEvent(alert_instance *ctx)

Purpose:Writes a row into the ’event’ table.

This routine must be called for each alert processed.

Argument:ctx => current context of parser

void LogEventHeader(alert_instance *ctx, int protocol,
const char **header)

108

Appendix E. Module AIR (mod_air) documentation

Purpose:Writes a row into a protocol header table (iphdr, tcphdr, udphdr, icmphdr)

This routine must be called at a minimum twice for each alert processed (1x for iphdr,
1x for the layer 4-protocol)

Argument:

• ctx => current context of parser

• protocol => for which protocol to write protocol header (IP, IPPROTO_TCP,
IPPROTO_UDP, IPROTO_ICMP)

• header => array (1-dim) holding the protocol header values. The structure of the array is
as follows:

• atts[i] : name of field, e.g. ’len’

• atts[i+1] : value of field, e.g. ’32’

void LogEventHeaderOptions(alert_instance *ctx, int protocol)

Purpose:Writes a row into a the protocol options table (’option’). The option data is
stored in the ’ctx’.

This routine must be called once for every option (ip or tcp)

Argument:

• ctx => current context of parser

• protocol => for which protocol to write protocol header (IP, IPPROTO_TCP,
IPPROTO_UDP, IPROTO_ICMP)

void LogEventPayload(alert_instance *ctx)

Purpose:Writes a row into a the payload table (’data’)

Not all alerts will have payload, and it is possible to configure the sensor not to send
payload at all.

Argument:ctx => current context of parser

int Insert(char *query)

109

Appendix E. Module AIR (mod_air) documentation

Purpose:(DB Abstraction) Inserts a SQL statement into a MySQL database

Argument:query => SQL statement to execute

Returns:success of running the SQL statement

• 1 : success

• 0 : failure

int Select(alert_instance ctx, char query)

Purpose:(DB Abstraction) Runs a SELECT query against a MySQL database which
will result in a single row being returned. From this row, a single numeric field will be
extracted and returned.

This routine is primarily used to retrieve the unique ID of a row with a particular
criteria.

Argument:

• ctx => current parser context

• query => SQL statement to execute

Returns:single field found by the query

• > 0 : query result

• 0 : failure

MYSQL * Connect(char t_dbname, char t_host, char t_port,
char t_user, char t_password)

Purpose:(DB Abstraction) Obtains a handle to a MySQL database

Argument:

• t_dbname => database name

• t_host => database host

110

Appendix E. Module AIR (mod_air) documentation

• t_port => database port on host

• t_user => database username

• t_password => database password for username

Returns:handle to the database

• > 0 : good DB handle

• 0 : failure

E.2.10. Alert Parsing Helpers

void ContextInit(alert_instance *alert, unsigned long id)

Purpose:Initializes the alert context. Sets the global variables of the parser related to
the entire XML stream.

This function should be called only once per XML stream.

Argument:

• alert => parser context to initialize

• id => X.509 serial number of sensor sending the alert

void ContextReInit(alert_instance *alert)

Purpose:Initializes the alert context between every individual alert in the stream. May
be called multiple times per single XML stream (ideally once per every alert).

Argument:alert => parser context to initialize

void ContextFullFree(alert_instance *alert)

Purpose:Deallocates and frees the alert context.

This function should only be called once per XML stream.

Argument:alert => parser context to deallocate

111

Appendix E. Module AIR (mod_air) documentation

void ContextFullFree(alert_instance *alert)

Purpose:Deallocates the alert context between individual alerts. Frees the specific
variables local to a single alert in the stream.

May be called multiple times per single XML stream (ideally once per alert).

Argument:alert => parser context to deallocate

unsigned int IPOctets2Int(unsigned int o0, unsigned int o1, un-
signed int o2,

unsigned int o3)

Purpose:Given 4 octets of an IP address, returns a 32-bit integer

Argument:

• o0 : XXX.x.x.x : byte 3 of the IP address

• o1 : x.XXX.x.x : byte 2 of the IP address

• o2 : x.x.XXX.x : byte 1 of the IP address

• o3 : x.x.x.XXX : byte 0 of the IP address

Returns:32-bit representation of an IP address from 4 octets

void CleanXMLStream(char *stream, int len)

Purpose:Takes an XML string and cleans out all characters deemed to be illegal.

Argument:

• stream => XML string to clean

• len => length of ’stream’

char * SQLClean(char *stream)

Purpose:Takes a string and cleans out all characters that would be illegal in a SQL
statement. This routine presupposes that CleamXMLStream() was already run on the
string.

Argument:stream => SQL string to clean

112

Appendix E. Module AIR (mod_air) documentation

Returns:cleaned SQL string

int CheckSQLOverflow(char *sql, int buffer_size)

Purpose:Verifies whether a generated sql string is malformed. Essentially, we assume
that if the string is the same size as the buffer length (a condition which should never
occur), then some piece of data is overflowing the buffer.

Argument:

• sql => SQL string to check

• buffer_size => length of SQL string

Return:boolean of whether the SQL statement has overflowed

void AddTag(alert_instance *ctx, char *tag)

Purpose:(Tag stack) Adds a tag to the top of the stack

Argument:

• ctx => alert parser context

• tag => tag to add

void RemoveTag(alert_instance *ctx)

Purpose:(Tag stack) Removes the top element from the tag stack

Argument:ctx => alert parser context

int CheckTag(alert_instance *ctx, int num, ...)

Purpose:(Tag stack) Verify that the top tag of the stack has the correct depth as well as
is embedded (tags prior) in the correct order.

Never compare the bottom of the stack (this is the dummy tag), or the very top (the
current element being verified)

Argument:

113

Appendix E. Module AIR (mod_air) documentation

• ctx => alert parser context

• num => number of tags to compare

• ... => (variable number of parameters) strings against which to compare previous tag.
First parameter = bottom of stack, last parameter is (top of stack) - 1

Return:boolean on whether the top tag is correct

char * top(alert_instance *ctx)

Purpose:(Tag stack) return the top of the tag stack

Argument:ctx => alert parser context

Return:top element of tag stack or NULL if empty

void RemoveAllTag(alert_instance *ctx)

Purpose:(Tag stack) removes all tags from tag stack

Argument:ctx => alert parser context

void PrintTags(alert_instance *ctx)

Purpose:(Tag stack) print the tag stack

Argument:ctx => alert parser context

114

Appendix F. Feedback protocol
specifications

This appendix documents all possible codes that the collector server can return with the
feedback protocol.

There are two classes of messages sent back to a sensor by the collector: status and
error. As the name implies, status messages are informational or non-fatal error
messages. Multiple status messages can be returned per each connection to the
collector. On the other hand, error messages are fatal messages caused by a graceful
abort. Only the first error message will be returned to the sensor; it will be the last
message in the the message stream.

The collector performs the following actions:

1. Authentication

2. Throttle control

3. Input processing

As a consequence of this task ordering, messages will appear in the following order:
AUTH_*, THROTTLE_*, INPUT_*, OK. It is possible that not all actions will be
performed due to an error.

F.1. OK (1xx)
STATUS 100 OK

Indicates a successful authentication and logging of all alerts into the database.

F.2. Authentication codes (3xx)
STATUS 300 AUTH_CLIENT_OK

Indicates that the client has been authenticated.

115

Appendix F. Feedback protocol specifications

ERROR 301 AUTH_CLIENT_DENIED

Indicates that the client has been authenticated, but its certificate has been revoked. The
corresponding alerts sent with this credential are dropped.

ERROR 302 AUTH_CLIENT_UNKNOWN

Indicates that the client certificate was signed by the collector CA, but is not in the CA
database. This condition should never happen and indicates problems with the
certificate registration authority. The corresponding alerts sent with this credential are
dropped.

ERROR 303 AUTH_CLIENT_IGNORED

Indicates that the CA could not be contacted to validate the client certificate. The
corresponding alerts sent with this credential are dropped.

F.3. Input Processing codes (4xx)
STATUS 400 INPUT_COMMIT_OK

Indicates that the alerts were successfully logged to the backing store.

ERROR 401 INPUT_COMMIT_ERROR

Indicates that some (unknown) error occurred and one or all commits to the backing
store failed. Since transactions are not implemented, there could be consistency issues
in the backing store.

ERROR 402 INPUT_EMPTY

Indicates that alerts were allegedly received but they appear to have no substance (i.e.
no content).

ERROR 403 INPUT_MALFORMED

Indicates that the XML parser (libxml) believes that the alert is not well-formed XML

ERROR 404 INPUT_INVALID

116

Appendix F. Feedback protocol specifications

Indicates that the validation logic believes that the XML does not conform to the
SNML DTD. This error is similar to ERROR 406, but was most likely triggered due to
maliciously crafted XML: infinite depth, processing routines called in wrong order,
crucial data committed or illegal.

ERROR 405 INPUT_PARSER_ERROR

Indicates that an internal error occurred in the XML parser (libxml).

ERROR 406 INPUT_INCOMPLETE

Indicates that the validation logic found missing fields when generating the write
command (INSERT) for the database.

ERROR 407 INPUT_DB_READ_FAIL

Indicates that the collector could not read a record from the database (probably when
trying to get a sensor ID).

ERROR 408 INPUT_OVERFLOW

Indicates that the collector has received a data stream in excess of what can be stored.
This usually indicates an attempt to perform a buffer-overflow.

ERROR 409 INPUT_IGNORED

Indicates that the collector received an alert, but was not able to process it due to an
internal server difficulty (e.g. high load).

F.4. Throttling codes (5xx)
STATUS 500 THROTTLE_OK

Indicates that alerts were accepted and the sensor is within the accepted throttle/commit
rate.

STATUS 501 THROTTLE_CONGESTION

117

Appendix F. Feedback protocol specifications

Indicates that the alerts were accepted, but the sensor is approaching the maximum
threshold of allowable alerts per unit time. This threshold is configurable at the
collector.

STATUS 502 THROTTLE_QUENCH

Indicates that the alerts were dropped since the number of allowable alerts in a time
window were exceeded by the client.

STATUS 503 THROTTLE_DENIED

Indicates that there is either a corrupt or full throttle table since the required connection
entry cannot be retrieved. Any connection receiving this error will be throttled and its
alerts dropped.

STATUS 504 THROTTLE_IGNORED

Indicates that an internal error has accord with the throttle table. Any connection
receiving this error will be throttled and its alerts dropped.

118

Appendix G. Detailed Performance
Analysis

The following configuration defines the testing parameters used to analyze single
sensor-to-collector performance.

• Architecture:Snort, Logging server (Apache), and DB server

(MySQL) all on same host

• Host: Pentium II 266, 64MB RAM - Linux

• Snort version:1.7-beta0 , first release of spo_xml

• cmd line:./snort -c snort.rules -i lo -d

• logging: output xml: log, host=128.2.243.68 port=443

file=alert.snort cert=./post.crt key=./key.pem ca=./ca.crt

server=AIR_CERT_Collector

• Alerts per Connection:1

• CipherSpec:TLSv1, EDH-RSA-DES-CBC3-SHA

• Trigger event: nc -G4 -g 127.0.0.1 -g 127.0.0.1 -g 127.0.0.1 -g

127.0.0.1 127.0.0.1 44

• Apache version:Apache/1.3.12 (Unix) mod_ssl/2.6.4 OpenSSL/0.9.5a

mod_snort/0.8.1

• MySQL version:3.22.32 , connected to via a local UNIX socket

• Network:1000 packets

119

Appendix G. Detailed Performance Analysis

Figure G-1. Alert processing time comparison

120

Appendix G. Detailed Performance Analysis

Figure G-2. Processing an Alert: Percent time in each operations

121

Glossary
Given that there is not an established set of terms for the Internet security industry these
terms are defined to ensure the reader will understand terms used in the context of this
thesis.

administrative domain

A network or networks under the sovereign control of a single individual or
organization.

alert

A representation of an a security event and the supporting data. Alerts are either
stored in a database or encoded as XML documents.

black hat

An attacker with malicious intent; the "bad guy". This word was chosen because
the other alternatives (e.g. attacker, intruder, hacker, cracker) tend to have multiple
overloaded meanings.

incident

A collection of data representing one or more related attacks. Attacks may be
related by attacker, type of attack, objectives, sites, or timing [R7].

false negative

Malicious activity that was not detected as suspicious. This type of failure is
viewed as very severe because an actual attack was missed.

false positive

Activity that is flagged as suspicious when in reality they are normal. This error is
typically the result of imprecise or misconfigured thresholds or attack signatures.
Too many false positives generate extreme numbers of IDS alerts whereby

122

Glossary

obscuring the legitimate events of concern, as well as causing a human tendency
to ignore future, legitimate instances of this alert as also erroneous.

security event

A security event is an instance of malicious activity.

signature

A representation or description of a particular type of security event.

white hat

A security professional with intent to improve security rather than exploit
weaknesses; the "good" guy.

123

Bibliography
Due to the mercurial nature of the security domain, much of the information is first
published (and sometimes only) on the Web. Thus, many of the references may be
modified or invalid in the future. If there are any questions about these entries, please
email roman@danyliw.com or jed@pickel.net.

References

[R1] T. Dierks and C. Allen,RFC2246: The TLS protocol version 1.0, January 1999.

[R2] S. Kent and R. Atkinson,RFC2401: Security Architecture for the Internet
Protocol, November 1998.

[R3] CERT/CC,CERT Advisory CA-1996-21 TCP SYN Flooding and IP Spoofing
Attacks, http://www.cert.org/advisories/CA-1996-21.html, 1996.

[R4] CERT/CC,CERT Advisory CA-1998-01 Smurf IP Denial-of-Service Attacks,
http://www.cert.org/advisories/CA-1998-01.html, 1998.

[R5] CERT/CC,Distributed-Systems Intruder Tools Workshop,
http://www.cert.org/reports/dsit_workshop-final.html, Pittsburgh, November 2-4,
1999.

[R6] COAST,Intrusion Detection,
http://www.cerias.purdue.edu/coast/intrusion-detection/detection.html.

[R7] State of Practice of Instrusion Detection Technologies, CERT/CC, Julia Allen, et.
al., January 2000.

[R8] Aurobindo Sundaram,An Introduction to Intrusion Detection, ACM Crossroads,
April 1996.

[R9] Thomas H. Ptacek and Timothy N. Newsham,Insertion, Evasion, and Denial of
Service: Eluding Network Intrusion Detection, Secure Networks Inc., January
1998, http://www.clark.net/~roesch/idspaper.html.

124

Bibliography

[R10] R. Housley, W. Ford, W. Polk, C. Allen, and D. Solo,RFC2459: Internet X.509
Public Key Infrastructure Certificate and CRL Profile, January 1999.

[R11] R. Fielding, J. Gettys, J. Mogul, H. Frystyk, L. Masinter, and et. al.,RFC2068:
Hypertext Transfer Protocol - HTTP/1.1, June 1999.

[R12] Michael Lemmon,System V Semaphores,
http://www.nd.edu/~lemmon/courses/UNIX/15/15.htm.

[R13] Guy Keren,Unix Multi-Process Programming and Inter-Process Communication
(IPC), http://users.actcom.co.il/~choo/lupg/multi-process/multi-process.html.

[R14] Barry M. Leiner, Vinton G. Cerf, David D. Clark, Robert E. Kahn, Leonard
Kleinrock, Daniel C. Lynch, Jon Postel, Larry G. Roberts, and Stephen Wolff,A
Brief History of the Internet, August 4, 2000,
http://www.isoc.org/internet-history/brief.html.

[R15] R. Pethia, S. Crocker, and B. Fraser,Guidelines for the Secure Operation of the
Internet, November, 1991, http://info.internet.isi.edu/in-notes/rfc/files/rfc1281.txt.

[R16] Cory Cohen,Incident Reporting Guidelines, 1998,
http://www.cert.org/tech_tips/incident_reporting.html.

[R17] Klaus-Peter Kossakowski and Moira West-Brown,International Infrastructure
for Global Security Incident Response, June 4, 1999,
http://www.cert.org/inter_infra/inter_infra.pdf.

[R18] CERT/CC,CERT/CC Overview, Incident and Vulnerability Trends,
http://www.cert.org/present/cert-overview-trends/sld225.htm.

[R19] Maureen Stillman,What’s Next for IDSs?, April 1999, Information Security
Magazine.

[R20] Clifford Kahn, Phillip Porras, Stuart Staniford-Chen, and Brian Tung,A Common
Intrusion Detection Framework, July 15, 1998, Journal of Computer Security.

[R21] Brian Tung,CIDF Interoperability Experiment Report (September 1999),
September 1999, http://www.gidos.org/demo/september99.html.

125

Bibliography

[R22] Michael Erlinger and Stuart Staniford-Chen,IDWG Charter, October, 2000,
http://www.ietf.org/html.charters/idwg-charter.html.

[R23] Dave Curry,Intrusion Detection Message Exchange Format Extensible Markup
Language (XML) Document Type Definition, July 6, 2000,
http://www.ietf.org/internet-drafts/draft-ietf-idwg-idmef-xml-01.txt.

[R24] Gupta,Intrusion Alert Protocol - IAP, March 31, 2000,
http://www.ietf.org/internet-drafts/draft-ietf-idwg-iap-01.txt.

[R25] John Howard and Tom Longstaff,A Common Language for Computer Security
Incidents, October, 1998, http://www.cert.org/research/taxonomy_988667.pdf.

[R26] Steve T. Eckmann, Giovanni Vigna, and Richard A. Kemmerer,STATL: An
Attack Language for State-based Intrusion Detection,
http://www.cs.ucsb.edu/~kemm/netstat.html/documents.html.

[R27] Jai Sundar Balasubramaniyan, Jose Omar Garcia-Fernandez, David Isacoff,
Eugene Spafford, and Zamboni Zamboni,An Architecture for Intrusion Detection
using Autonomous Agents,
ftp://coast.cs.purdue.edu/pub/COAST/papers/diego-zamboni/zamboni9805.ps.

[R28] AIDE abstract, http://www.sans.org/NS2000/techcon.htm.

[R29] EMERALD Project Description, http://www.sdl.sri.com/emerald/project.html.

[R30] Federal Intrusion Detection Network (FIDNET) Homepage,
http://www.fedcirc.gov/fidnet/.

[R31] Peter Rob and Carlos Coronel,Database System: Design, Implementation, and
Management, Boyd & Fraser, 1995.

[R32] Andrew Cormack, Jan Meijer, and Yuri Demchenko,Incident Taxonomy and
Description Working Group Charter,
http://www.terena.nl/task-forces/tf-csirt/i-taxonomy/.

[R33] The SHADOW Intrusion Detection System,
http://www.nswc.navy.mil/ISSEC/CID/.

126

Bibliography

[R34] Fyodor Yarochkin,SnortNet - A distributed IDS approach,
http://snortnet.scorpions.net/snortnet.pdf.

[R35] Jed Pickel,Automating Incident Reporting, May, 1999, FIRST Conference
Proceedings 1999.

[R36] AIRCERT, http://www.cert.org/kb/aircert/.

[R37] AUSCERT - Automated Report Processing,
http://www.auscert.org.au/Information/Auscert_info/probe.html.

[R38] Jed Pickel,INCIDENT.ORG Project, http://www.incident.org/.

[R39] Silicon Defense,SnortSnarf, http://www.silicondefense.com/snortsnarf/.

[R40] SecurityFocus Incidents Mailing List, http://www.securityfocus.com/.

[R41] Global Incident Analysis Center, http://www.sans.org/giac/.

[R42] IA Architecture, Modeling, and Mangagement, Richard Feiertag, Stuart
Staniford-Chen, Karl Levitt, Mark Heckman, and Dave Peticolas,
http://www.pgp.com/research/nailabs/ia-architecture/demonstration.asp.

[R43] RSA Security,RSA Labs FAQ: What key size should be used?,
http://www.rsasecurity.com/rsalabs/faq/4-1-2-1.html, 2000.

[R44] Bruce Schneier,Applied Cryptography, Wiley, 1996.

[R45] Linclon Stein and Doug MacEachern,Writing Apache Modules with Perl and C,
O’Reilly, 1999.

Implementation Component Documentation

[C1] Ralf S. Engelschall,Apache 1.3 Dynamic Shared Object (DSO) support,
http://www.apache.org/docs/dso.html, April 1998.

127

Bibliography

[C2] DevShed.com,Professional Apache: Improving Apache’s Performance,
http://www.devshed.com/Books/ProApache, May 18, 2000.

[C3] Apache Software Foundation,What about the Apache Server Project,
http://httpd.apache.org/ABOUT_APACHE.html.

[C4] Martin Roesch,What is Snort?, http://www.snort.org/what_is_snort.htm.

[C5] James Hoagland and Stuart Staniford,SPICE: The Stealthy Portscan and Intrusion
Correlation Engine, SiliconDefense, http://www.silicondefense.com/spice.

[C6] Martin Roesch,Writing Snort Rules,
http://www.snort.org/writing_snort_rules.htm.

[C7] MySQL, MySQL Manual: Chapter 8.3: ISAM Tables,
http://www.mysql.com/documentation/mysql/commented/manual.php?section=ISAM.

[C8] Tcpdump and Libpcap,TCPDUMP Public Repository, http://www.tcpdump.org.

128

